Comparative Study of Adaptive l1-Regularization for the Application of Structural Damage Diagnosis Under Seismic Excitation

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Buildings vol. 15, no. 10 (2025), p. 1628
Váldodahkki: Wu, Weilin
Eará dahkkit: Wang, Junfang, Lin, Jianfu, Liu Xuanyu
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3211921544
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15101628  |2 doi 
035 |a 3211921544 
045 2 |b d20250515  |b d20250531 
084 |a 231437  |2 nlm 
100 1 |a Wu, Weilin  |u Department of Applied Mechanics and Engineering, School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen 518107, China; wuwlin3@mail2.sysu.edu.cn (W.W.); 
245 1 |a Comparative Study of Adaptive <i>l</i><sub>1</sub>-Regularization for the Application of Structural Damage Diagnosis Under Seismic Excitation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Damage identification plays a crucial role in the post-earthquake assessment and safety control of civil structures, which is usually an ill-posed inverse problem due to the presence of uncertainties and lack of measurement information. Regularization is a cutting-edge technique used to address ill-posed problems and has been developed for decades. A comprehensive review and comparison have first been conducted to identify the limitations and research gaps in the existing regularization methods for structural damage detection. Thereafter, we identified the development of the adaptive sparse regularization (ASR) method, capable of dynamically adjusting regularization parameters and sparsity according to specific damage patterns or environmental conditions, as one of the emerging research directions. Therefore, this paper systematically formulates and summarizes the theoretical framework of the ASR-based damage detection method for engineering applications to facilitate an in-depth comparative analysis. To validate the performance of the ASR method for post-earthquake structural damage diagnosis, numerical experiments are carried out on 2D and 3D models under diverse damage detection scenarios subjected to typical natural seismic excitations. These experimental investigations consider the influences of different parameter settings and uncertainties. Subsequently, the effects of damage patterns, available modal information, and solution algorithms are systematically analyzed and discussed. The results of the numerical investigation indicate that the ASR-based method is effective for damage detection, showing satisfactory accuracy and stability under complex damage scenarios and extreme conditions with a limited number of sensors and insufficient modal information. Furthermore, integrating the ASR-based damage detection method with appropriate optimization algorithms can enhance its capability to precisely identify isolated or hybrid-distributed damage. 
653 |a Earthquakes 
653 |a Accuracy 
653 |a Comparative analysis 
653 |a Investigations 
653 |a Algorithms 
653 |a Optimization 
653 |a Signal processing 
653 |a Environmental conditions 
653 |a Damage detection 
653 |a Diagnosis 
653 |a Measurement techniques 
653 |a Structural damage 
653 |a Parameter uncertainty 
653 |a Comparative studies 
653 |a Regularization 
653 |a Seismic activity 
653 |a Seismic response 
653 |a Inverse problems 
653 |a Ill posed problems 
653 |a Sensors 
653 |a Damage patterns 
653 |a Earthquake damage 
653 |a Three dimensional models 
653 |a Regularization methods 
653 |a False alarms 
700 1 |a Wang, Junfang  |u National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China 
700 1 |a Lin, Jianfu  |u Center of Safety Monitoring of Engineering Structures, Shenzhen Academy of Disaster Prevention and Reduction, China Earthquake Administration, Shenzhen 518003, China 
700 1 |a Liu Xuanyu  |u Department of Applied Mechanics and Engineering, School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen 518107, China; wuwlin3@mail2.sysu.edu.cn (W.W.); 
773 0 |t Buildings  |g vol. 15, no. 10 (2025), p. 1628 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211921544/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211921544/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211921544/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch