Developing an Alternative Calculation Method for the Smart Readiness Indicator Based on Genetic Programming and Linear Regression

Guardat en:
Dades bibliogràfiques
Publicat a:Buildings vol. 15, no. 10 (2025), p. 1675
Autor principal: Beras Mitja
Altres autors: Brezočnik Miran, Uroš, Župerl, Kovačič Miha
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3211922132
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15101675  |2 doi 
035 |a 3211922132 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Beras Mitja  |u Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; miran.brezocnik@um.si (M.B.); uros.zuperl@um.si (U.Ž.) 
245 1 |a Developing an Alternative Calculation Method for the Smart Readiness Indicator Based on Genetic Programming and Linear Regression 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The European Union is planning to introduce a new tool for evaluating smart solutions in buildings—the Smart Readiness Indicator (SRI). As 54 energy efficiency categories must be evaluated, the triage process can be long and time-intensive. Altogether, 228 data points (or inputs) about the smartness of the buildings are required to complete the evaluation. The present paper proposes an alternative calculation method based on genetic programming (GP) for the calculation of Domains and linear regression (LR) for the calculation of Impact Factors and the total SRI score of the building. This novel calculation requires 20% (Domain ventilation and dynamic building envelope) to 75% (Domain cooling) fewer inputs than the original methodology. The present study evaluated 223 case study buildings, and 7 genetic programming models and 8 linear regression models were generated based on the results. The generated results are precise; the relative deviation from the experimental data for Domain scores (modelled with GP) ranged from 0.9% to 2.9%. The R2 for the LR models was 0.75 for most models (with two exceptions, with one with a value of 0.57 and the other with a value of 0.98). The developed method is scalable and could be used for preliminary and portfolio-level screening at early-stage assessments. 
651 4 |a Europe 
653 |a Accuracy 
653 |a Green buildings 
653 |a Mathematical analysis 
653 |a Building envelopes 
653 |a Regression analysis 
653 |a Models 
653 |a Genetic algorithms 
653 |a Cooperation 
653 |a Regression models 
653 |a Buildings 
653 |a Energy efficiency 
653 |a Building automation 
653 |a Programming 
653 |a Design 
653 |a Alternative energy sources 
653 |a Energy resources 
653 |a Energy consumption 
653 |a Data points 
700 1 |a Brezočnik Miran  |u Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; miran.brezocnik@um.si (M.B.); uros.zuperl@um.si (U.Ž.) 
700 1 |a Uroš, Župerl  |u Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; miran.brezocnik@um.si (M.B.); uros.zuperl@um.si (U.Ž.) 
700 1 |a Kovačič Miha  |u Štore Steel d.o.o., Železarska cesta 3, 3220 Štore, Slovenia; miha.kovacic@store-steel.si 
773 0 |t Buildings  |g vol. 15, no. 10 (2025), p. 1675 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211922132/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211922132/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211922132/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch