Neurophysiological Approaches to Lie Detection: A Systematic Review

Guardado en:
Detalles Bibliográficos
Publicado en:Brain Sciences vol. 15, no. 5 (2025), p. 519
Autor principal: Taha Bewar Neamat
Otros Autores: Baykara Muhammet, Alakuş Talha Burak
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211925692
003 UK-CbPIL
022 |a 2076-3425 
024 7 |a 10.3390/brainsci15050519  |2 doi 
035 |a 3211925692 
045 2 |b d20250101  |b d20251231 
084 |a 231436  |2 nlm 
100 1 |a Taha Bewar Neamat  |u Department of Software Engineering, Fırat University, Elazığ 23119, Türkiye; bewar_nemat@outlook.com (B.N.T.); 
245 1 |a Neurophysiological Approaches to Lie Detection: A Systematic Review 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Background and Objectives: Lie detection is crucial in domains such as security, law enforcement, and clinical assessments. Traditional methods suffer from reliability issues and susceptibility to countermeasures. In recent years, electroencephalography (EEG) and particularly the Event-Related Potential (ERP) P300 component have gained prominence for identifying concealed information. This systematic review aims to evaluate recent studies (2017–2024) on EEG-based lie detection using ERP P300 responses, especially in relation to recognized and unrecognized face stimuli. The goal is to summarize commonly used EEG signal processing techniques, feature extraction methods, and classification algorithms, identifying those that yield the highest accuracy in lie detection tasks. Methods: This review followed PRISMA guidelines for systematic reviews. A comprehensive literature search was conducted using IEEE Xplore, Web of Science, Scopus, and Google Scholar, restricted to English-language articles from 2017 to 2024. Studies were included if they focused on EEG-based lie detection, utilized experimental protocols like Concealed Information Test (CIT), Guilty Knowledge Test (GKT), or Deceit Identification Test (DIT), and evaluated classification accuracy using ERP P300 components. Results: CIT with ERP P300 was the most frequently employed protocol. The most used preprocessing method was Bandpass Filtering (BPF), and the Discrete Wavelet Transform (DWT) emerged as the preferred feature extraction technique due to its suitability for non-stationary EEG signals. Among classification algorithms, Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Convolutional Neural Networks (CNN) were frequently utilized. These findings demonstrate the effectiveness of hybrid and deep learning-based models in enhancing classification performance. Conclusions: EEG-based lie detection, particularly using the ERP P300 response to face recognition tasks, shows promising accuracy and robustness compared to traditional polygraph methods. Combining advanced signal processing methods with machine learning and deep learning classifiers significantly improves performance. This review identifies the most effective methodologies and suggests that future research should focus on real-time applications, cross-individual generalization, and reducing system complexity to facilitate broader adoption. 
653 |a Physiology 
653 |a Signal processing 
653 |a Investigations 
653 |a Law enforcement 
653 |a Signal to noise ratio 
653 |a Algorithms 
653 |a Biometrics 
653 |a EEG 
653 |a Brain research 
653 |a Pattern recognition 
653 |a Classification 
653 |a Magnetic resonance imaging 
653 |a Pattern recognition systems 
653 |a Polygraphs 
653 |a Neurosciences 
653 |a Event-related potentials 
653 |a Nervous system 
653 |a Methods 
653 |a Deep learning 
653 |a Neural networks 
653 |a Learning algorithms 
653 |a Machine learning 
700 1 |a Baykara Muhammet  |u Department of Software Engineering, Fırat University, Elazığ 23119, Türkiye; bewar_nemat@outlook.com (B.N.T.); 
700 1 |a Alakuş Talha Burak  |u Department of Software Engineering, Kırklareli University, Kırklareli 39100, Türkiye 
773 0 |t Brain Sciences  |g vol. 15, no. 5 (2025), p. 519 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211925692/abstract/embedded/XH47U3ESDU1O47K5?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211925692/fulltextwithgraphics/embedded/XH47U3ESDU1O47K5?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211925692/fulltextPDF/embedded/XH47U3ESDU1O47K5?source=fedsrch