Learning Self-Supervised Representations of Powder-Diffraction Patterns

Guardado en:
Detalles Bibliográficos
Publicado en:Crystals vol. 15, no. 5 (2025), p. 393
Autor principal: Das Shubhayu
Otros Autores: Vorholt, Markus, Houben, Andreas, Dronskowski, Richard
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211933298
003 UK-CbPIL
022 |a 2073-4352 
024 7 |a 10.3390/cryst15050393  |2 doi 
035 |a 3211933298 
045 2 |b d20250101  |b d20251231 
084 |a 231448  |2 nlm 
100 1 |a Das Shubhayu 
245 1 |a Learning Self-Supervised Representations of Powder-Diffraction Patterns 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The potential of machine learning (ML) models for predicting crystallographic symmetry information from single-phase powder X-ray diffraction (XRD) patterns is investigated. Given the scarcity of large, labeled experimental datasets, we train our models using simulated XRD patterns generated from crystallographic databases. A key challenge in developing reliable diffraction-based structure-solution tools lies in the limited availability of training data and the presence of natural adversarial examples, which hinder model generalization. To address these issues, we explore multiple training pipelines and testing strategies, including evaluations on experimental XRD data. We introduce a contrastive representation learning approach that significantly outperforms previous supervised learning models in terms of robustness and generalizability, demonstrating improved invariance to experimental effects. These results highlight the potential of self-supervised learning in advancing ML-driven crystallographic analysis. 
653 |a Crystal structure 
653 |a X ray powder diffraction 
653 |a Machine learning 
653 |a Accuracy 
653 |a Self-supervised learning 
653 |a Neural networks 
653 |a Classification 
653 |a X-ray diffraction 
653 |a Crystallography 
653 |a Algorithms 
653 |a Diffraction patterns 
653 |a Representations 
653 |a Extinction 
700 1 |a Vorholt, Markus 
700 1 |a Houben, Andreas 
700 1 |a Dronskowski, Richard 
773 0 |t Crystals  |g vol. 15, no. 5 (2025), p. 393 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211933298/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211933298/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211933298/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch