MARC

LEADER 00000nab a2200000uu 4500
001 3211937044
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15050574  |2 doi 
035 |a 3211937044 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a Jia Yue 
245 1 |a Bidirectional Teaching Reform in Theoretical Mechanics: Integrating Engineering Thinking and Personalized Assignments 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Traditional theoretical mechanics courses often emphasize the rote learning of principles over practical applications. This focus can diminish student engagement and leave graduates ill prepared for applying concepts to real engineering problems. To address these challenges, this study introduces a bidirectional teaching reform that integrates a front-end focus on cultivating engineering thinking with a back-end focus on personalized assignment design. In the front-end reform, active learning methods, including case-based and project-based learning (PBL) within a structured BOPPPS lesson framework, are used to connect theoretical content with real-world engineering scenarios, thereby strengthening problem-solving skills and engagement among students. The back-end reform introduces personalized and collaborative assignments tailored to the interests and abilities of students, such as individualized problem sets, programming-based exercises, and team projects that encourage innovation and a deeper exploration of mechanics concepts. By addressing both in-class instruction and post-class work, these two reforms complement each other, providing a cohesive learning experience from initial concept acquisition to practical application. Implemented together in a second-year undergraduate mechanics course, this integrated approach was observed to increase student motivation, improve students’ ability to apply theory in practice, and enhance overall teaching effectiveness while fostering stronger collaborative skills. This bidirectional reform provides an effective model for modernizing theoretical mechanics education and prepares students to meet contemporary engineering needs by bridging the longstanding gap between theoretical knowledge and practical application. 
653 |a Problem solving 
653 |a Teaching 
653 |a Kinematics 
653 |a Pedagogy 
653 |a Students 
653 |a Design of experiments 
653 |a Collaboration 
653 |a Curricula 
653 |a Interdisciplinary aspects 
653 |a Reforms 
653 |a Mechanics 
653 |a Performance evaluation 
653 |a Longitudinal studies 
653 |a Innovations 
653 |a Research methodology 
653 |a Active learning 
653 |a Educational objectives 
653 |a Knowledge 
653 |a Engineering education 
653 |a Problem based learning 
653 |a Adaptive learning 
653 |a Educational Philosophy 
653 |a Instructional Innovation 
653 |a Experiential Learning 
653 |a Control Groups 
653 |a Experimental Groups 
653 |a Conventional Instruction 
653 |a Learning Strategies 
653 |a Motion 
653 |a Academic Achievement 
653 |a Participant Characteristics 
653 |a Educational Change 
653 |a Prerequisites 
653 |a Data Analysis 
653 |a Quasiexperimental Design 
653 |a Problem Sets 
653 |a Outcomes of Education 
653 |a Course Content 
653 |a Learner Engagement 
653 |a Educational Facilities Improvement 
653 |a Educational Needs 
653 |a Mechanics (Physics) 
653 |a Programming 
700 1 |a Li, Chun 
773 0 |t Education Sciences  |g vol. 15, no. 5 (2025), p. 574 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211937044/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211937044/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211937044/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch