Neural Moving Horizon Estimation: A Systematic Literature Review

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 10 (2025), p. 1954
Autor principal: Surrayya, Mobeen
Otros Autores: Jann, Cristobal, Singoji Shashank, Basaam, Rassas, Izadi Mohammadreza, Shayan Zeinab, Amin, Yazdanshenas, Sohi, Harneet Kaur, Barnsley, Robert, Elliott, Lana, Faieghi Reza
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211937439
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14101954  |2 doi 
035 |a 3211937439 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Surrayya, Mobeen 
245 1 |a Neural Moving Horizon Estimation: A Systematic Literature Review 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a The neural moving horizon estimator (NMHE) is a relatively new and powerful state estimator that combines the strengths of neural networks (NNs) and model-based state estimation techniques. Various approaches exist for constructing NMHEs, each with its unique advantages and limitations. However, a comprehensive literature review that consolidates existing knowledge, outlines design guidelines, and highlights future research directions is currently lacking. To address this gap, this systematic review screened 1164 records and ultimately included 22 primary studies, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol. This paper (1) explains the fundamental principles of NMHEs, (2) explores three major NMHE architectures, (3) analyzes the types of NNs used, such as multi-layer perceptrons (MLPs), long short-term memory networks (LSTMs), radial basis function networks (RBFs), and fuzzy neural networks, (4) reviews real-time implementability—including reported execution times ranging from 1.6 μs to 11.28 s on different computing hardware—and (5) identifies common limitations and future research directions. The findings show that NMHEs can be realized in three principal ways: model learning, cost function learning, and approximating the real-time optimization in moving horizon estimation. Cost function learning offers flexibility in capturing task-specific estimation goals, while model learning and optimization approximation approaches tend to improve estimation accuracy and computational speed, respectively. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Radial basis function 
653 |a Learning 
653 |a Mathematical models 
653 |a Multilayers 
653 |a Cost function 
653 |a Estimates 
653 |a Multilayer perceptrons 
653 |a Optimization 
653 |a Process controls 
653 |a State estimation 
653 |a Design 
653 |a Networks 
653 |a Kalman filters 
653 |a Real time 
653 |a Systematic review 
653 |a Parameter estimation 
653 |a Literature reviews 
653 |a Approximation 
700 1 |a Jann, Cristobal 
700 1 |a Singoji Shashank 
700 1 |a Basaam, Rassas 
700 1 |a Izadi Mohammadreza 
700 1 |a Shayan Zeinab 
700 1 |a Amin, Yazdanshenas 
700 1 |a Sohi, Harneet Kaur 
700 1 |a Barnsley, Robert 
700 1 |a Elliott, Lana 
700 1 |a Faieghi Reza 
773 0 |t Electronics  |g vol. 14, no. 10 (2025), p. 1954 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211937439/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211937439/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211937439/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch