Neural-Driven Constructive Heuristic for 2D Robotic Bin Packing Problem

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 10 (2025), p. 1956
Autor principal: Kaleta Mariusz
Otros Autores: Śliwiński Tomasz
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211937587
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14101956  |2 doi 
035 |a 3211937587 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Kaleta Mariusz 
245 1 |a Neural-Driven Constructive Heuristic for 2D Robotic Bin Packing Problem 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study addresses the two-dimensional weakly homogeneous Bin Packing Problem (2D-BPP) in the context of robotic packing, where items must be arranged in a manner feasible for robotic manipulation. Traditional heuristics for this NP-hard problem often lack adaptability across diverse datasets, while metaheuristics typically suffer from slow convergence. To overcome these limitations, we propose a novel neural-driven constructive heuristic. The method employs a population of simple feed-forward neural networks, which are trained using black-box optimization via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The resulting neural network dynamically scores candidate placements within the constructive heuristic. Unlike conventional heuristics, the approach adapts to instance-specific characteristics without relying on predefined rules. Evaluated on datasets generated by 2DCPackGen and real-world logistic scenarios, the proposed method consistently outperforms benchmark heuristics such as MaxRects and Skyline, reducing the average number of bins required across various item types and demand ranges. The most significant improvements occur in complex instances, with up to 86% of 2DCPackGen cases yielding superior results. This heuristic offers a flexible and extremely fast, data-driven solution to the algorithm selection problem, demonstrating robustness and potential for broader application in combinatorial optimization while avoiding the scalability issues of reinforcement learning-based methods. 
653 |a Covariance matrix 
653 |a Heuristic 
653 |a Datasets 
653 |a Neural networks 
653 |a Combinatorial analysis 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Algorithms 
653 |a Linear programming 
653 |a Packing problem 
653 |a Automation 
653 |a Machine learning 
653 |a Packaging 
653 |a Heuristic methods 
653 |a Robotics 
700 1 |a Śliwiński Tomasz 
773 0 |t Electronics  |g vol. 14, no. 10 (2025), p. 1956 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211937587/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211937587/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211937587/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch