Dual-Domain Superposition for Maritime Relay Communications: A Flexible-Coded Transmission Design Towards Spectrum–Reliability Synergy

Guardado en:
Bibliografiske detaljer
Udgivet i:Electronics vol. 14, no. 10 (2025), p. 2019
Hovedforfatter: Shi, Yao
Andre forfattere: Tian Yanzhao
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3211940038
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14102019  |2 doi 
035 |a 3211940038 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Shi, Yao  |u Pucheng College, Hainan University, Haikou 570228, China 
245 1 |a Dual-Domain Superposition for Maritime Relay Communications: A Flexible-Coded Transmission Design Towards Spectrum–Reliability Synergy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Maritime relay communication has emerged as a critical application scenario for non-terrestrial networks (NTNs), providing beyond-line-of-sight (BLOS) connectivity for offshore terminals. Unlike terrestrial environments, the complex marine propagation conditions lead to signal instability. To enhance the robustness of maritime two-way relay networks (TWRNs), we propose a novel physical-layer network coding (PNC) scheme based on block Markov superposition transmission (BMST). The proposed scheme introduces a novel co-design framework that achieves dual breakthroughs: (1) robust error correction via BMST’s spatially coupled coding architecture and (2) spectral efficiency maximization through PNC’s spatial-domain signal superposition. Moreover, we develop a decoding–computing (DC) algorithm that sequentially performs iterative decoding followed by computing. Compared to the computing–decoding (CD) algorithm, the proposed DC algorithm mitigates useful information loss at relay nodes, achieving a 2.9 dB coding gain at a bit error rate (BER) of <inline-formula>10−5</inline-formula>. Owing to the DC algorithm’s dual-layer decoding architecture, we can further improve the overall system performance through targeted optimization of either the code rate or memory size for communication sides with poor channel conditions, yielding an extra 0.2 dB gain at a BER of <inline-formula>10−5</inline-formula> compared to non-optimized configurations. The simulation results demonstrate that the proposed scheme significantly enhances maritime relay communication performance under harsh oceanic channel conditions while providing actionable insights for optimizing next-generation maritime communication system designs. 
653 |a Relay networks 
653 |a Co-design 
653 |a Computation 
653 |a Terrestrial environments 
653 |a Marine terminals 
653 |a Computer architecture 
653 |a Decoding 
653 |a Communication 
653 |a Error correction 
653 |a Signal processing 
653 |a Manuscripts 
653 |a Optimization 
653 |a Line of sight 
653 |a Unmanned aerial vehicles 
653 |a Communications systems 
653 |a Algorithms 
653 |a Connectivity 
653 |a Bit error rate 
653 |a Codes 
653 |a Research & development--R&D 
653 |a Performance evaluation 
653 |a Satellites 
653 |a Coding 
653 |a Efficiency 
700 1 |a Tian Yanzhao  |u School of Cryptology, Hainan University, Haikou 570228, China; tiany2048@hainanu.edu.cn 
773 0 |t Electronics  |g vol. 14, no. 10 (2025), p. 2019 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211940038/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211940038/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211940038/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch