Characterization of Thermal Runaway of Lithium Ternary Power Battery in Semi-Confined Space

Guardado en:
Detalles Bibliográficos
Publicado en:Energies vol. 18, no. 10 (2025), p. 2444
Autor principal: Xu, Hai
Otros Autores: Hou Chenghao, Hu, Po, Chen, Yanhe
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211943265
003 UK-CbPIL
022 |a 1996-1073 
024 7 |a 10.3390/en18102444  |2 doi 
035 |a 3211943265 
045 2 |b d20250101  |b d20251231 
084 |a 231459  |2 nlm 
100 1 |a Xu, Hai  |u Shenyang Aircraft Airworthiness Certification Center of Civil Aviation Admin of China, Shenyang 110046, China; xuh@syacc.org (H.X.); chenyh@syacc.org (Y.C.) 
245 1 |a Characterization of Thermal Runaway of Lithium Ternary Power Battery in Semi-Confined Space 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In some new energy aircraft powered by lithium-ion batteries (LIBs), the LIBs operate in semi-confined spaces. Therefore, studying the thermal runaway (TR) characteristics of LIBs in such spaces is significant to safety research of new energy aircraft. This paper investigated TR of LIBs in semi-confined space by using external heating, and compared it with the TR characteristics in open space in terms of behavior characteristics and temperature changes of lithium ternary power batteries in semi-confined spaces. The results show that the TR process of LIBs can be subdivided into seven different stages according to the TR characteristics of LIBs. Compared with the TR process of the LIB in open space, TR of the LIB in semi-confined space has an additional explosion stage. In terms of temperature, the maximum TR temperature of the LIB in open space is 708 °C, and the maximum heating rate is 72.3 °C/s, while the maximum temperature in semi-confined space is 552 °C, and the maximum heating rate is 32.1 °C/s. This study is beneficial for the subsequent provision of certain theoretical guidance for LIBs use in semi-confined environments. 
651 4 |a China 
653 |a Aircraft 
653 |a Propagation 
653 |a Behavior 
653 |a Batteries 
653 |a Energy industry 
653 |a Experiments 
653 |a Temperature 
653 |a Lithium 
653 |a Explosions 
653 |a Camcorders 
700 1 |a Hou Chenghao  |u College of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China 
700 1 |a Hu, Po  |u College of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China 
700 1 |a Chen, Yanhe  |u Shenyang Aircraft Airworthiness Certification Center of Civil Aviation Admin of China, Shenyang 110046, China; xuh@syacc.org (H.X.); chenyh@syacc.org (Y.C.) 
773 0 |t Energies  |g vol. 18, no. 10 (2025), p. 2444 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211943265/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211943265/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211943265/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch