Trustworthy AI and Federated Learning for Intrusion Detection in 6G-Connected Smart Buildings

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Future Internet vol. 17, no. 5 (2025), p. 191
المؤلف الرئيسي: Garroppo, Rosario G
مؤلفون آخرون: Giardina, Pietro Giuseppe, Landi Giada, Ruta, Marco
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3211963510
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17050191  |2 doi 
035 |a 3211963510 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Garroppo, Rosario G  |u Department of Information Engineering, University of Pisa, Via Girolamo Caruso, 16, 56122 Pisa, Italy 
245 1 |a Trustworthy AI and Federated Learning for Intrusion Detection in 6G-Connected Smart Buildings 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Smart building applications require robust security measures to ensure system functionality, privacy, and security. To this end, this paper proposes a Federated Learning Intrusion Detection System (FL-IDS) composed of two convolutional neural network (CNN) models to detect network and IoT device attacks simultaneously. Collaborative training across multiple cooperative smart buildings enables model development without direct data sharing, ensuring privacy by design. Furthermore, the design of the proposed method considers three key principles: sustainability, adaptability, and trustworthiness. The proposed data pre-processing and engineering system significantly reduces the amount of data to be processed by the CNN, helping to limit the processing load and associated energy consumption towards more sustainable Artificial Intelligence (AI) techniques. Furthermore, the data engineering process, which includes sampling, feature extraction, and transformation of data into images, is designed considering its adaptability to integrate new sensor data and to fit seamlessly into a zero-touch system, following the principles of Machine Learning Operations (MLOps). The designed CNNs allow for the investigation of AI reasoning, implementing eXplainable AI (XAI) techniques such as the correlation map analyzed in this paper. Using the ToN-IoT dataset, the results show that the proposed FL-IDS achieves performance comparable to that of its centralized counterpart. To address the specific vulnerabilities of FL, a secure and robust aggregation method is introduced, making the system resistant to poisoning attacks from up to <inline-formula>20%</inline-formula> of the participating clients. 
653 |a User interface 
653 |a Software 
653 |a User training 
653 |a Security 
653 |a Artificial intelligence 
653 |a Communication 
653 |a Buildings 
653 |a Artificial neural networks 
653 |a Confidentiality 
653 |a Privacy 
653 |a Firmware 
653 |a Data processing 
653 |a Smart buildings 
653 |a Algorithms 
653 |a Automation 
653 |a Machine learning 
653 |a Federated learning 
653 |a Energy consumption 
653 |a Explainable artificial intelligence 
653 |a Robustness 
653 |a Intrusion detection systems 
700 1 |a Giardina, Pietro Giuseppe  |u NextWorks s.r.l., 56122 Pisa, Italy; p.giardina@nextworks.it (P.G.G.); g.landi@nextworks.it (G.L.); m.ruta@nextworks.it (M.R.) 
700 1 |a Landi Giada  |u NextWorks s.r.l., 56122 Pisa, Italy; p.giardina@nextworks.it (P.G.G.); g.landi@nextworks.it (G.L.); m.ruta@nextworks.it (M.R.) 
700 1 |a Ruta, Marco  |u NextWorks s.r.l., 56122 Pisa, Italy; p.giardina@nextworks.it (P.G.G.); g.landi@nextworks.it (G.L.); m.ruta@nextworks.it (M.R.) 
773 0 |t Future Internet  |g vol. 17, no. 5 (2025), p. 191 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211963510/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211963510/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211963510/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch