YOLO-UFS: A Novel Detection Model for UAVs to Detect Early Forest Fires

Guardado en:
Detalles Bibliográficos
Publicado en:Forests vol. 16, no. 5 (2025), p. 743
Autor principal: Luo Zitong
Otros Autores: Xu, Haining, Xing Yanqiu, Zhu Chuanhao, Jiao Zhupeng, Cui Chengguo
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211963519
003 UK-CbPIL
022 |a 1999-4907 
024 7 |a 10.3390/f16050743  |2 doi 
035 |a 3211963519 
045 2 |b d20250501  |b d20250531 
084 |a 231463  |2 nlm 
100 1 |a Luo Zitong  |u School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; 2022221046@nefu.edu.cn (H.X.); 2021214565@nefu.edu.cn (C.Z.); 2022211310@nefu.edu.cn (Z.J.); 2022210971@nefu.edu.cn (C.C.) 
245 1 |a YOLO-UFS: A Novel Detection Model for UAVs to Detect Early Forest Fires 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Forest fires endanger ecosystems and human life, making early detection crucial for effective prevention. Traditional detection methods are often inadequate due to large coverage areas and inherent limitations. However, drone technology combined with deep learning holds promise. This study investigates using small drones equipped with lightweight deep learning models to detect forest fires early. A high-quality dataset constructed through aerial image analysis supports robust model training. The proposed YOLO-UFS network, based on YOLOv5s, integrates enhancements such as the C3-MNV4 module, BiFPN, AF-IoU loss function, and NAM attention mechanism. These modifications achieve a 91.3% mAP on the self-built early forest fire dataset. Compared to the original model, YOLO-UFS improves accuracy by 3.8%, recall by 4.1%, and average accuracy by 3.2%, while reducing computational parameters by 74.7% and 78.3%. It outperforms other mainstream YOLO algorithms on drone platforms, balancing accuracy and real-time performance. In generalization experiments using public datasets, the model’s mAP0.5 increased from 85.2% to 86.3%, and mAP0.5:0.95 from 56.7% to 57.9%, with an overall mAP gain of 3.3%. The optimized model runs efficiently on the Jetson Nano platform with 258 GB of RAM, 7.4 MB of storage memory, and an average frame rate of 30 FPS. In this study, airborne visible light images are used to provide a low-cost and high-precision solution for the early detection of forest fires, so that low-computing UAVs can achieve the requirements of early detection, early mobilization, and early extinguishment. Future work will focus on multi-sensor data fusion and human–robot collaboration to further improve the accuracy and reliability of detection. 
651 4 |a China 
653 |a Forest fires 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Forest fire detection 
653 |a Image processing 
653 |a Data integration 
653 |a Image analysis 
653 |a Unmanned aerial vehicles 
653 |a Sensors 
653 |a Random access memory 
653 |a Algorithms 
653 |a Data collection 
653 |a Drones 
653 |a Image quality 
653 |a Forest & brush fires 
653 |a Object recognition 
653 |a Real time 
653 |a Multisensor fusion 
653 |a Environmental 
700 1 |a Xu, Haining  |u School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; 2022221046@nefu.edu.cn (H.X.); 2021214565@nefu.edu.cn (C.Z.); 2022211310@nefu.edu.cn (Z.J.); 2022210971@nefu.edu.cn (C.C.) 
700 1 |a Xing Yanqiu  |u School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; 2022221046@nefu.edu.cn (H.X.); 2021214565@nefu.edu.cn (C.Z.); 2022211310@nefu.edu.cn (Z.J.); 2022210971@nefu.edu.cn (C.C.) 
700 1 |a Zhu Chuanhao  |u School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; 2022221046@nefu.edu.cn (H.X.); 2021214565@nefu.edu.cn (C.Z.); 2022211310@nefu.edu.cn (Z.J.); 2022210971@nefu.edu.cn (C.C.) 
700 1 |a Jiao Zhupeng  |u School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; 2022221046@nefu.edu.cn (H.X.); 2021214565@nefu.edu.cn (C.Z.); 2022211310@nefu.edu.cn (Z.J.); 2022210971@nefu.edu.cn (C.C.) 
700 1 |a Cui Chengguo  |u School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; 2022221046@nefu.edu.cn (H.X.); 2021214565@nefu.edu.cn (C.Z.); 2022211310@nefu.edu.cn (Z.J.); 2022210971@nefu.edu.cn (C.C.) 
773 0 |t Forests  |g vol. 16, no. 5 (2025), p. 743 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211963519/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211963519/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211963519/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch