Enhanced Propaganda Detection in Public Social Media Discussions Using a Fine-Tuned Deep Learning Model: A Diffusion of Innovation Perspective

Na minha lista:
Detalhes bibliográficos
Publicado no:Future Internet vol. 17, no. 5 (2025), p. 212
Autor principal: Ahmad Pir Noman
Outros Autores: Shah, Adnan Muhammad, Lee, KangYoon
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3211965215
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17050212  |2 doi 
035 |a 3211965215 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Ahmad Pir Noman  |u IRC for Finance and Digital Economy, KFUPM Business School, King Fahad University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; ahmadpir40@gmail.com 
245 1 |a Enhanced Propaganda Detection in Public Social Media Discussions Using a Fine-Tuned Deep Learning Model: A Diffusion of Innovation Perspective 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a During the COVID-19 pandemic, social media platforms emerged as both vital information sources and conduits for the rapid spread of propaganda and misinformation. However, existing studies often rely on single-label classification, lack contextual sensitivity, or use models that struggle to effectively capture nuanced propaganda cues across multiple categories. These limitations hinder the development of robust, generalizable detection systems in dynamic online environments. In this study, we propose a novel deep learning (DL) framework grounded in fine-tuning the RoBERTa model for a multi-label, multi-class (ML-MC) classification task, selecting RoBERTa due to its strong contextual representation capabilities and demonstrated superiority in complex NLP tasks. Our approach is rigorously benchmarked against traditional and neural methods, including, TF-IDF with n-grams, Conditional Random Fields (CRFs), and long short-term memory (LSTM) networks. While LSTM models show strong performance in capturing sequential patterns, our RoBERTa-based model achieves the highest overall accuracy at 88%, outperforming state-of-the-art baselines. Framed within the diffusion of innovations theory, the proposed model offers clear relative advantages—including accuracy, scalability, and contextual adaptability—that support its early adoption by Information Systems researchers and practitioners. This study not only contributes a high-performing detection model but also delivers methodological and theoretical insights for combating propaganda in digital discourse, enhancing resilience in online information ecosystems. 
653 |a Innovations 
653 |a Accuracy 
653 |a Labels 
653 |a Datasets 
653 |a Classification 
653 |a Information systems 
653 |a Information sources 
653 |a Social networks 
653 |a Conditional random fields 
653 |a Neural networks 
653 |a Task complexity 
653 |a False information 
653 |a Deep learning 
653 |a Digital media 
653 |a COVID-19 
700 1 |a Shah, Adnan Muhammad  |u Chair of Marketing and Innovation, Department of Socioeconomics, University of Hamburg, 20146 Hamburg, Germany; adnan.shah@uni-hamburg.de 
700 1 |a Lee, KangYoon  |u Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea 
773 0 |t Future Internet  |g vol. 17, no. 5 (2025), p. 212 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211965215/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211965215/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211965215/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch