A New Custom Deep Learning Model Coupled with a Flood Index for Multi-Step-Ahead Flood Forecasting

Guardat en:
Dades bibliogràfiques
Publicat a:Hydrology vol. 12, no. 5 (2025), p. 104
Autor principal: Shen, Jianming
Altres autors: Yang Moyuan, Zhang, Juan, Chen, Nan, Li, Binghua
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3211981646
003 UK-CbPIL
022 |a 2306-5338 
024 7 |a 10.3390/hydrology12050104  |2 doi 
035 |a 3211981646 
045 2 |b d20250101  |b d20251231 
100 1 |a Shen, Jianming  |u College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China 
245 1 |a A New Custom Deep Learning Model Coupled with a Flood Index for Multi-Step-Ahead Flood Forecasting 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate and prompt flood forecasting is essential for effective decision making in flood control to help minimize or prevent flood damage. We propose a new custom deep learning model, IF-CNN-GRU, for multi-step-ahead flood forecasting that incorporates the flood index (<inline-formula>IF</inline-formula>) to improve the prediction accuracy. The model integrates convolutional neural networks (CNNs) and gated recurrent neural networks (GRUs) to analyze the spatiotemporal characteristics of hydrological data, while using a custom recursive neural network that adjusts the neural unit output at each moment based on the flood index. The IF-CNN-GRU model was applied to forecast floods with a lead time of 1–5 d at the Baihe hydrological station in the middle reaches of the Han River, China, accompanied by an in-depth investigation of model uncertainty. The results showed that incorporating the flood index <inline-formula>IF</inline-formula> improved the forecast precision by up to 20%. The analysis of uncertainty revealed that the contributions of modeling factors, such as the datasets, model structures, and their interactions, varied across the forecast periods. The interaction factors contributed 17–36% of the uncertainty, while the contribution of the datasets increased with the forecast period (32–53%) and that of the model structure decreased (32–28%). The experiment also demonstrated that data samples play a critical role in improving the flood forecasting accuracy, offering actionable insights to reduce the predictive uncertainty and providing a scientific basis for flood early warning systems and water resource management. 
651 4 |a China 
651 4 |a Han River 
653 |a Damage prevention 
653 |a Warning systems 
653 |a Resource management 
653 |a Early warning systems 
653 |a Artificial neural networks 
653 |a Flood control 
653 |a Water depth 
653 |a Flood damage 
653 |a Flood forecasting 
653 |a Machine learning 
653 |a Uncertainty 
653 |a Damage 
653 |a Datasets 
653 |a Water resources management 
653 |a Accuracy 
653 |a Recurrent neural networks 
653 |a Stream flow 
653 |a Water resources 
653 |a Decision making 
653 |a Flood predictions 
653 |a Hydrologic data 
653 |a Flood management 
653 |a Deep learning 
653 |a Forecasting 
653 |a Floods 
653 |a Hydrology 
653 |a Lead time 
653 |a Neural networks 
700 1 |a Yang Moyuan  |u Beijing Water Science and Technology Institute, Beijing 100048, China 
700 1 |a Zhang, Juan  |u Beijing Water Science and Technology Institute, Beijing 100048, China 
700 1 |a Chen, Nan  |u Beijing Water Science and Technology Institute, Beijing 100048, China 
700 1 |a Li, Binghua  |u Beijing Water Science and Technology Institute, Beijing 100048, China 
773 0 |t Hydrology  |g vol. 12, no. 5 (2025), p. 104 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211981646/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211981646/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211981646/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch