Evaluation of the Effectiveness of the UNet Model with Different Backbones in the Semantic Segmentation of Tomato Leaves and Fruits

Guardado en:
Detalles Bibliográficos
Publicado en:Horticulturae vol. 11, no. 5 (2025), p. 514
Autor principal: Guerra Ibarra Juan Pablo
Otros Autores: Cuevas de la Rosa Francisco Javier, Hernandez Vidales Julieta Raquel
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211981743
003 UK-CbPIL
022 |a 2311-7524 
024 7 |a 10.3390/horticulturae11050514  |2 doi 
035 |a 3211981743 
045 2 |b d20250101  |b d20251231 
100 1 |a Guerra Ibarra Juan Pablo  |u Centro de Investigaciones en Óptica A.C., Leon 37150, Guanajuato, Mexico; fjcuevas@cio.mx 
245 1 |a Evaluation of the Effectiveness of the UNet Model with Different Backbones in the Semantic Segmentation of Tomato Leaves and Fruits 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Timely identification of crop conditions is relevant for informed decision-making in precision agriculture. The initial step in determining the conditions that crops require involves isolating the components that constitute them, including the leaves and fruits of the plants. An alternative method for conducting this separation is to utilize intelligent digital image processing, wherein plant elements are labeled for subsequent analysis. The application of Deep Learning algorithms offers an alternative approach for conducting segmentation tasks on images obtained from complex environments with intricate patterns that pose challenges for separation. One such application is semantic segmentation, which involves assigning a label to each pixel in the processed image. This task is accomplished through training various models of Convolutional Neural Networks. This paper presents a comparative analysis of semantic segmentation performance using a convolutional neural network model with different backbone architectures. The task focuses on pixel-wise classification into three categories: leaves, fruits, and background, based on images of semi-hydroponic tomato crops captured in greenhouse settings. The main contribution lies in identifying the most efficient backbone-UNet combination for segmenting tomato plant leaves and fruits under uncontrolled conditions of lighting and background during image acquisition. The Convolutional Neural Network model UNet is is implemented with different backbones to use transfer learning to take advantage of the knowledge acquired by other models such as MobileNet, VanillaNet, MVanillaNet, ResNet, VGGNet trained with the ImageNet dataset, in order to segment the leaves and fruits of tomato plants. Highest percentage performance across five metrics for tomato plant fruit and leaves segmentation is the MVanillaNet-UNet and VGGNet-UNet combination with <inline-formula>0.88089</inline-formula> and <inline-formula>0.89078</inline-formula> respectively. A comparison of the best results of semantic segmentation versus those obtained with a color-dominant segmentation method optimized with a greedy algorithm is presented. 
653 |a Digital imaging 
653 |a Software 
653 |a Tomography 
653 |a Comparative analysis 
653 |a Fruits 
653 |a Optimization techniques 
653 |a Tomatoes 
653 |a Artificial neural networks 
653 |a Separation 
653 |a Hydroponics 
653 |a Task complexity 
653 |a Leaves 
653 |a Greedy algorithms 
653 |a Crops 
653 |a Image processing 
653 |a Crop diseases 
653 |a Semantic segmentation 
653 |a Machine learning 
653 |a Deep learning 
653 |a Transfer learning 
653 |a Plants 
653 |a Agriculture 
653 |a Pixels 
653 |a Artificial intelligence 
653 |a Fourier transforms 
653 |a Image segmentation 
653 |a Computer vision 
653 |a Precision agriculture 
653 |a Neural networks 
653 |a Algorithms 
653 |a Image acquisition 
653 |a Decision making 
653 |a Semantics 
653 |a Economic 
700 1 |a Cuevas de la Rosa Francisco Javier  |u Centro de Investigaciones en Óptica A.C., Leon 37150, Guanajuato, Mexico; fjcuevas@cio.mx 
700 1 |a Hernandez Vidales Julieta Raquel  |u Instituto Tecnológico Nacional de México, Campus Zamora, Zamora 59720, Michoacan, Mexico; julieta.hv@zamora.tecnm.mx 
773 0 |t Horticulturae  |g vol. 11, no. 5 (2025), p. 514 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211981743/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211981743/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211981743/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch