Artificial Intelligence-Based Prediction Model for Maritime Vessel Type Identification

Guardado en:
Detalles Bibliográficos
Publicado en:Information vol. 16, no. 5 (2025), p. 367
Autor principal: Karna Hrvoje
Otros Autores: Braović Maja, Gudelj Anita, Buličić Kristian
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211988346
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16050367  |2 doi 
035 |a 3211988346 
045 2 |b d20250501  |b d20250531 
084 |a 231474  |2 nlm 
100 1 |a Karna Hrvoje  |u Naval Department, University of Defense and Security “Dr. Franjo Tuđman”, 10000 Zagreb, Croatia 
245 1 |a Artificial Intelligence-Based Prediction Model for Maritime Vessel Type Identification 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents an artificial intelligence-based model for the classification of maritime vessel images obtained by cameras operating in the visible part of the electromagnetic spectrum. It incorporates both the deep learning techniques for initial image representation and traditional image processing and machine learning methods for subsequent image classification. The presented model is therefore a hybrid approach that uses the Inception v3 deep learning model for the purpose of image vectorization and a combination of SVM, kNN, logistic regression, Naïve Bayes, neural network, and decision tree algorithms for final image classification. The model is trained and tested on a custom dataset consisting of a total of 2915 images of maritime vessels. These images were split into three subsections: training (2444 images), validation (271 images), and testing (200 images). The images themselves encompassed 11 distinctive classes: cargo, container, cruise, fishing, military, passenger, pleasure, sailing, special, tanker, and non-class (objects that can be encountered at sea but do not represent maritime vessels). The presented model accurately classified 86.5% of the images used for training purposes and therefore demonstrated how a relatively straightforward model can still achieve high accuracy and potentially be useful in real-world operational environments aimed at sea surveillance and automatic situational awareness at sea. 
610 4 |a North Atlantic Treaty Organization--NATO 
651 4 |a Croatia 
651 4 |a Adriatic Sea 
653 |a Sea vessels 
653 |a Automatic classification 
653 |a Deep learning 
653 |a Maritime security 
653 |a Data mining 
653 |a Evacuations & rescues 
653 |a Automation 
653 |a Machine learning 
653 |a Image processing 
653 |a Decision trees 
653 |a Cameras 
653 |a Territorial waters 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Computer vision 
653 |a Prediction models 
653 |a Situational awareness 
653 |a Image classification 
653 |a Design 
653 |a Algorithms 
653 |a Information systems 
653 |a Surveillance 
653 |a Identification systems 
653 |a Covert operations 
653 |a Radar 
653 |a National parks 
700 1 |a Braović Maja  |u Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia; maja.braovic@fesb.hr 
700 1 |a Gudelj Anita  |u Faculty of Maritime Studies, University of Split, 21000 Split, Croatia; anita@pfst.hr 
700 1 |a Buličić Kristian  |u Naval Studies, University of Split, 21000 Split, Croatia; kristian.bulicic@unist.hr 
773 0 |t Information  |g vol. 16, no. 5 (2025), p. 367 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211988346/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211988346/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211988346/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch