An Ensemble Classification Method Based on a Stacking Strategy for Ship Type Classification with AIS Data

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Marine Science and Engineering vol. 13, no. 5 (2025), p. 886
1. Verfasser: Deng Lei
Weitere Verfasser: Yang, Shichen, Jia Limin, Geng Danyang
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3212028167
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13050886  |2 doi 
035 |a 3212028167 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Deng Lei  |u School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; denglei@cttic.cn 
245 1 |a An Ensemble Classification Method Based on a Stacking Strategy for Ship Type Classification with AIS Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ship type (e.g., Cargo, Tanker and Fishing) classification is crucial for marine management, environmental protection, and maritime safety, as it enhances navigation safety and aids regulatory agencies in combating illegal activities. Traditional ship type classification methods with AIS data are often plagued by problems such as data imbalance, insufficient feature extraction, reliance on single-model approaches, or unscientific model combination methods, which reduce the accuracy of classification. In this paper, we propose an ensemble classification method based on a stacking strategy to overcome these challenges. We apply the SMOTE technique to balance the dataset by generating minority class samples. Then, a more comprehensive ship behavior model is developed by combining static and dynamic features. A stacking strategy is adopted for the classification, integrating multiple tree structure-based classifiers to improve classification performance. The experimental results show that the ensemble classification method based on the stacking strategy outperforms traditional classifiers such as CatBoost, Random Forest, Decision Tree, LightGBM, and the ensemble classification method, especially in terms of improving classification precision, recall, F1 score, ROC curve, and AUC. This method improves the accuracy of ship type recognition, and it is suitable to real-time online classification, which is helpful for applications in marine safety monitoring, law enforcement, and illegal fishing detection. 
653 |a Kinematics 
653 |a Behavior 
653 |a Accuracy 
653 |a Ports 
653 |a Illegal fishing 
653 |a Fishing vessels 
653 |a Classification 
653 |a Fishing 
653 |a Navigation 
653 |a Safety 
653 |a Design specifications 
653 |a Maritime safety 
653 |a Decision trees 
653 |a Environmental protection 
653 |a Environmental management 
653 |a Machine learning 
653 |a Enforcement 
653 |a Route optimization 
653 |a Navigational aids 
653 |a Algorithms 
653 |a Real time 
653 |a Navigation safety 
653 |a Satellites 
653 |a Environmental 
700 1 |a Yang, Shichen  |u School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China; ysc6764@126.com 
700 1 |a Jia Limin  |u School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; denglei@cttic.cn 
700 1 |a Geng Danyang  |u China Transport Informatics National Engineering Laboratory Co., Ltd., Beijing 100094, China; gengdanyang@cttic.cn 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 5 (2025), p. 886 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212028167/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212028167/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212028167/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch