Dynamic Error Compensation for Ball Screw Feed Drive Systems Based on Prediction Model

Na minha lista:
Detalhes bibliográficos
Publicado no:Machines vol. 13, no. 5 (2025), p. 433
Autor principal: Liu, Hongda
Outros Autores: Guo Yonghao, Liu, Jiaming, Niu Wentie
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3212073297
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13050433  |2 doi 
035 |a 3212073297 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Liu, Hongda 
245 1 |a Dynamic Error Compensation for Ball Screw Feed Drive Systems Based on Prediction Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The dynamic error is the dominant factor affecting multi-axis CNC machining accuracy. Predicting and compensating for dynamic errors is vital in high-speed machining. This paper proposes a novel prediction-model-based approach to predict and compensate for the ball screw feed system’s dynamic error. Based on the lumped and distributed mass methods, this method constructs a parameterized dynamic model relying on the moving component’s position for electromechanical coupling modeling. Using Latin Hypercube Sampling and numerical simulation, a sample set containing the input and output of one control cycle is obtained, which is used to train a Cascade-Forward Neural Network to predict dynamic errors. Finally, a feedforward compensation strategy based on the prediction model is proposed to improve tracking performance. The proposed method is applied to a ball screw feed system. Tracking error simulations and experiments are conducted and compared with the transfer function feedforward compensation. Typical trajectories are designed to validate the effectiveness of the electromechanical coupling model, the dynamic error prediction model, and the feedforward compensation strategy. The results show that the prediction model exhibits a maximum prediction deviation of 1.8% for the maximum tracking error and 13% for the average tracking error. The proposed compensation method with friction compensation achieves a maximum reduction rate of 76.7% for the maximum tracking error and 63.7% for the average tracking error. 
653 |a Friction 
653 |a Simulation 
653 |a Accuracy 
653 |a Neural networks 
653 |a Prediction models 
653 |a High speed machining 
653 |a Motion control 
653 |a Engineering 
653 |a Hypercubes 
653 |a Methods 
653 |a Dynamic models 
653 |a Tracking errors 
653 |a Feed systems 
653 |a Error compensation 
653 |a Transfer functions 
653 |a Efficiency 
653 |a Latin hypercube sampling 
653 |a Ball screws 
653 |a Coupling 
700 1 |a Guo Yonghao 
700 1 |a Liu, Jiaming 
700 1 |a Niu Wentie 
773 0 |t Machines  |g vol. 13, no. 5 (2025), p. 433 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212073297/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212073297/fulltextwithgraphics/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212073297/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch