Dynamic Dual-Phase Forecasting Model for New Product Demand Using Machine Learning and Statistical Control

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Mathematics vol. 13, no. 10 (2025), p. 1613
Egile nagusia: Wang, Chien-Chih
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:Forecasting demand for newly introduced products presents substantial challenges within high-mix, low-volume manufacturing contexts, primarily due to cold-start conditions and unpredictable order behavior. This research proposes the Dynamic Dual-Phase Forecasting Framework (DDPFF) that amalgamates machine learning-based classification, similarity-driven analogous forecasting, ARMA-based residual compensation, and statistical process control for adaptive model refinement. The framework underwent evaluation through five real-world case studies conducted by a Taiwanese semiconductor tray manufacturer, encompassing a variety of scenarios characterized by high volatility, seasonality, and structural drift. The results indicate that DDPFF consistently outperformed conventional ARIMA and analogous forecasting methodologies, yielding an average reduction of 35.7% in mean absolute error and a 41.8% enhancement in residual stability across all examined cases. In one representative instance, the forecast error decreased by 44.9% compared to established benchmarks. These findings underscore the framework’s resilience in cold-start situations and its capacity to adapt to evolving demand patterns, providing a viable solution for data-scarce and dynamic manufacturing environments.
ISSN:2227-7390
DOI:10.3390/math13101613
Baliabidea:Engineering Database