DREFNet: Deep Residual Enhanced Feature GAN for VVC Compressed Video Quality Improvement

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics vol. 13, no. 10 (2025), p. 1609
Hlavní autor: Das Tanni
Další autoři: Choi, Kiho
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3212074297
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13101609  |2 doi 
035 |a 3212074297 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Das Tanni  |u Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea; tannidas@khu.ac.kr 
245 1 |a DREFNet: Deep Residual Enhanced Feature GAN for VVC Compressed Video Quality Improvement 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent years, the use of video content has experienced exponential growth. The rapid growth of video content has led to an increased reliance on various video codecs for efficient compression and transmission. However, several challenges are associated with codecs such as H.265/High Efficiency Video Coding and H.266/Versatile Video Coding (VVC) that can impact video quality and performance. One significant challenge is the trade-off between compression efficiency and visual quality. While advanced codecs can significantly reduce file sizes, they introduce artifacts such as blocking, blurring, and color distortion, particularly in high-motion scenes. Different compression tools in modern video codecs are vital for minimizing artifacts that arise during the encoding and decoding processes. While the advanced algorithms used by these modern codecs can effectively decrease file sizes and enhance compression efficiency, they frequently find it challenging to eliminate artifacts entirely. By utilizing advanced techniques such as post-processing after the initial decoding, this method can significantly improve visual clarity and restore details that may have been compromised during compression. In this paper, we introduce a Deep Residual Enhanced Feature Generative Adversarial Network as a post-processing method aimed at further improving the quality of reconstructed frames from the advanced codec VVC. By utilizing the benefits of Deep Residual Blocks and Enhanced Feature Blocks, the generator network aims to make the reconstructed frame as similar as possible to the original frame. The discriminator network, a crucial element of our proposed method, plays a vital role in guiding the generator by evaluating the authenticity of generated frames. By distinguishing between fake and original frames, the discriminator enables the generator to improve the quality of its output. This feedback mechanism ensures that the generator learns to create more realistic frames, ultimately enhancing the overall performance of the model. The proposed method shows significant gain for Random Access (RA) and All Intra (AI) configurations while improving Video Multimethod Assessment Fusion (VMAF) and Multi-Scale Structural Similarity Index Measure (MS-SSIM). Considering VMAF, our proposed method can obtain 13.05% and 11.09% Bjøntegaard Delta Rate (BD-Rate) gain for RA and AI configuration, respectively. In the case of the luma component MS-SSIM, RA and AI configurations get, respectively, 5.00% and 5.87% BD-Rate gain after employing our suggested proposed network. 
653 |a Performance enhancement 
653 |a Artifacts 
653 |a Deep learning 
653 |a Codec 
653 |a Frames (data processing) 
653 |a Decoding 
653 |a Random access 
653 |a Bandwidths 
653 |a Discriminators 
653 |a Neural networks 
653 |a Efficiency 
653 |a Generative adversarial networks 
653 |a Algorithms 
653 |a Streaming media 
653 |a Video compression 
653 |a Configurations 
700 1 |a Choi, Kiho  |u Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea; tannidas@khu.ac.kr 
773 0 |t Mathematics  |g vol. 13, no. 10 (2025), p. 1609 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212074297/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212074297/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212074297/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch