Microstructural Characterization of Expansive Soil Stabilized with Coconut Husk Ash: A Multi-Technique Investigation into Mineralogy, Pore Architecture, and Surface Interactions

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals vol. 15, no. 5 (2025), p. 516
1. Verfasser: Abhishek Ankur
Weitere Verfasser: GuhaRay Anasua, Hata Toshiro, Abuel-Naga Hossam
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3212090115
003 UK-CbPIL
022 |a 2075-163X 
024 7 |a 10.3390/min15050516  |2 doi 
035 |a 3212090115 
045 2 |b d20250101  |b d20251231 
084 |a 231539  |2 nlm 
100 1 |a Abhishek Ankur  |u Department of Civil Engineering, BITS-Pilani Hyderabad Campus, Secunderabad 500078, India; p20200433@hyderabad.bits-pilani.ac.in 
245 1 |a Microstructural Characterization of Expansive Soil Stabilized with Coconut Husk Ash: A Multi-Technique Investigation into Mineralogy, Pore Architecture, and Surface Interactions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Black cotton soil (BCS) is unsuitable for construction due to its high plasticity, low shear strength, and significant volume changes upon wetting and drying. The present study investigates the effectiveness of an alkali-activated coconut husk ash (CHA) binder in improving the geotechnical properties of BCS. CHA is derived from coconut husk and serves as a sustainable binder. Microstructural characterization of untreated and CHA-treated BCS was carried out using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The specific surface area (SSA) and porosity were evaluated using nitrogen gas adsorption methods based on the Brunauer–Emmett–Teller (BET) and Langmuir techniques. The Barrett–Joyner–Halenda (BJH) method demonstrated a decrease in mean pore diameter from 6.7 nm to 6.2 nm following CHA treatment. The SSA diminished from 40.94 m2/g to 25.59 m2/g, signifying the development of calcium silicate hydrate (C-S-H) gels that occupied the pore spaces. The formation of pozzolanic reaction products enhanced the microstructural integrity of the treated soil. Unconfined compressive strength (UCS) test results at 24 h and 28 days of curing for CHA-treated soil have been incorporated to analyze the optimum binder content. The UCS values enhanced significantly from 182 kPa to 305 kPa and 1030 kPa, respectively, at 9% binder content after 24 h and 28 days of curing. The microstructural and mechanical strength test analysis results indicated that CHA is a feasible and environmentally sustainable substitute for BCS stabilization. CHA-based AAB will be an eco-friendly alternative to cement and lime, reducing CO2 emissions and construction costs. 
651 4 |a Tamil Nadu India 
651 4 |a India 
653 |a Scanning electron microscopy 
653 |a Compressive strength 
653 |a Fourier transforms 
653 |a Infrared spectroscopy 
653 |a Moisture content 
653 |a Electron microscopy 
653 |a Shear strength 
653 |a Expansive soils 
653 |a Gels 
653 |a Soil properties 
653 |a Mineralogy 
653 |a Reaction products 
653 |a Ashes 
653 |a Curing 
653 |a Chemicals 
653 |a Cement 
653 |a Binders (materials) 
653 |a Construction costs 
653 |a Carbon dioxide 
653 |a Soil strength 
653 |a Silicates 
653 |a Cotton 
653 |a Construction 
653 |a Calcium silicate hydrate 
653 |a Porosity 
653 |a Sustainability 
653 |a Ratios 
653 |a Adsorption 
653 |a Hydrates 
653 |a Soil stabilization 
653 |a Caustic soda 
653 |a Agricultural pollution 
653 |a Curing (processing) 
653 |a Sodium 
653 |a Temperature 
653 |a Carbon dioxide emissions 
653 |a Silica 
653 |a Soil porosity 
653 |a Soil treatment 
653 |a Mechanical properties 
653 |a Calcium 
700 1 |a GuhaRay Anasua  |u Department of Civil Engineering, BITS-Pilani Hyderabad Campus, Secunderabad 500078, India; p20200433@hyderabad.bits-pilani.ac.in 
700 1 |a Hata Toshiro  |u Department of Civil and Environmental Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima City 739-8527, Hiroshima, Japan; thata@hiroshima-u.ac.jp 
700 1 |a Abuel-Naga Hossam  |u Department of Engineering, La Trobe University, Melbourne, VIC 3086, Australia; h.aboel-naga@latrobe.edu.au 
773 0 |t Minerals  |g vol. 15, no. 5 (2025), p. 516 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212090115/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212090115/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212090115/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch