Recent Progress in Organic Optoelectronic Synaptic Devices

Guardado en:
書目詳細資料
發表在:Photonics vol. 12, no. 5 (2025), p. 435
主要作者: He, Min
其他作者: Tang, Xin
出版:
MDPI AG
主題:
在線閱讀:Citation/Abstract
Full Text + Graphics
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
Resumen:Organic semiconductors hold immense promise in the field of optoelectronic synapses due to their tunable optoelectronic properties, mechanical flexibility, and biocompatibility. This review article provides a comprehensive overview of recent advancements in organic optoelectronic synaptic devices. We delve into the fundamental concepts and classifications of these devices, examine their roles and operational mechanisms, and explore their diverse application scenarios. Additionally, we highlight the current challenges and emerging opportunities in this field, outlining a forward-looking path for the future development and application of these materials and devices in next-generation artificial intelligence (AI). We emphasize the potential of further optimizing organic materials and devices, which could significantly enhance the integration of organic synapses into biointegrated electronics and human–computer interfaces. By addressing key challenges such as material stability, device performance, and scalability, we aim to accelerate the transition from laboratory research to practical applications, paving the way for innovative AI systems that mimic biological neural networks.
ISSN:2304-6732
DOI:10.3390/photonics12050435
Fuente:Advanced Technologies & Aerospace Database