Analysis of Nutritional Content in Rice Seeds Based on Near-Infrared Spectroscopy

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Photonics vol. 12, no. 5 (2025), p. 481
Yazar: Kong Hengyuan
Diğer Yazarlar: Wang, Jianing, Lin Guanyu, Chen, Jianbo, Xie Zhitao
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3212091732
003 UK-CbPIL
022 |a 2304-6732 
024 7 |a 10.3390/photonics12050481  |2 doi 
035 |a 3212091732 
045 2 |b d20250101  |b d20251231 
084 |a 231546  |2 nlm 
100 1 |a Kong Hengyuan  |u Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; konghengyuan23@mails.ucas.ac.cn (H.K.); 
245 1 |a Analysis of Nutritional Content in Rice Seeds Based on Near-Infrared Spectroscopy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The nutritional quality of rice seeds is mainly determined by the content of key components such as protein, fat, and starch. Traditional chemical detection methods are time-consuming, labor-intensive, inefficient, and harmful to the environment. To overcome these limitations, this study developed a non-destructive detection method using near-infrared spectroscopy (1000–2200 nm) combined with linear regression modeling to achieve efficient and simultaneous multi-component analysis through the principle of anharmonic molecular vibration. By combining nutrient data from chemical analysis with spectroscopic measurements, we established a comprehensive rice seed composition dataset. After preprocessing with Gaussian denoising, first-order derivative transformation, SPA wavelength selection, and multiplicative scatter correction (MSC), we constructed partial least squares regression (PLS) and orthogonal partial least squares (OPLS), as well as artificial neural network (ANN) models. The OPLS model performed well in fat prediction (R2 = 0.971, Q2 = 0.926, RMSE = 0.175, RMSECV = 0.186), followed by starch (R2 = 0.956, Q2 = 0.907, RMSE = 0.159, RMSECV = 0.146) and protein (R2 = 0.967, Q2 = 0.936, RMSE = 0.164, RMSECV = 0.156). Our results confirm that the combination of the moving average, first order derivative, SPA, and MSC preprocessing of the OPLS model significantly improves the prediction. The developed non-destructive testing equipment provides a practical solution for automated, high-precision sorting of rice seeds based on nutrient composition. 
653 |a Chemical analysis 
653 |a Test equipment 
653 |a Accuracy 
653 |a Chemical detection 
653 |a Anharmonicity 
653 |a Nondestructive testing 
653 |a Reagents 
653 |a Artificial neural networks 
653 |a Calibration 
653 |a Least squares method 
653 |a Infrared analysis 
653 |a Grain 
653 |a Soybeans 
653 |a Infrared spectra 
653 |a Infrared spectroscopy 
653 |a Seeds 
653 |a Dietary minerals 
653 |a Proteins 
653 |a Agriculture 
653 |a Preprocessing 
653 |a Nutritive value 
653 |a Analytical chemistry 
653 |a Near infrared radiation 
653 |a Rice 
653 |a Neural networks 
653 |a Glucose 
653 |a Vibration analysis 
653 |a Methods 
653 |a Nutrients 
653 |a Algorithms 
653 |a Light 
653 |a Composition 
653 |a Starch 
700 1 |a Wang, Jianing  |u Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; konghengyuan23@mails.ucas.ac.cn (H.K.); 
700 1 |a Lin Guanyu  |u Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; konghengyuan23@mails.ucas.ac.cn (H.K.); 
700 1 |a Chen, Jianbo  |u College of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China 
700 1 |a Xie Zhitao  |u Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; konghengyuan23@mails.ucas.ac.cn (H.K.); 
773 0 |t Photonics  |g vol. 12, no. 5 (2025), p. 481 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212091732/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212091732/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212091732/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch