A Comprehensive Review of Deep Learning Applications in Cotton Industry: From Field Monitoring to Smart Processing

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Plants vol. 14, no. 10 (2025), p. 1481
Hoofdauteur: Zhi-Yu, Yang
Andere auteurs: Wan-Ke, Xia, Hao-Qi, Chu, Wen-Hao, Su, Rui-Feng, Wang, Wang, Haihua
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3212094297
003 UK-CbPIL
022 |a 2223-7747 
024 7 |a 10.3390/plants14101481  |2 doi 
035 |a 3212094297 
045 2 |b d20250101  |b d20251231 
084 |a 231551  |2 nlm 
100 1 |a Zhi-Yu, Yang  |u College of Information and Electrical Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China; yangzhiyu@cau.edu.cn (Z.-Y.Y.); 2020301010225@cau.edu.cn (W.-K.X.) 
245 1 |a A Comprehensive Review of Deep Learning Applications in Cotton Industry: From Field Monitoring to Smart Processing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Cotton is a vital economic crop in global agriculture and the textile industry, contributing significantly to food security, industrial competitiveness, and sustainable development. Traditional technologies such as spectral imaging and machine learning improved cotton cultivation and processing, yet their performance often falls short in complex agricultural environments. Deep learning (DL), with its superior capabilities in data analysis, pattern recognition, and autonomous decision-making, offers transformative potential across the cotton value chain. This review highlights DL applications in seed quality assessment, pest and disease detection, intelligent irrigation, autonomous harvesting, and fiber classification et al. DL enhances accuracy, efficiency, and adaptability, promoting the modernization of cotton production and precision agriculture. However, challenges remain, including limited model generalization, high computational demands, environmental adaptability issues, and costly data annotation. Future research should prioritize lightweight, robust models, standardized multi-source datasets, and real-time performance optimization. Integrating multi-modal data—such as remote sensing, weather, and soil information—can further boost decision-making. Addressing these challenges will enable DL to play a central role in driving intelligent, automated, and sustainable transformation in the cotton industry. 
653 |a Competitiveness 
653 |a Cotton 
653 |a Agricultural production 
653 |a Textile industry 
653 |a Pattern recognition 
653 |a Harvesting 
653 |a Adaptability 
653 |a Remote sensing 
653 |a Agriculture 
653 |a Annotations 
653 |a Automation 
653 |a Modal data 
653 |a Machine learning 
653 |a Decision making 
653 |a Disease detection 
653 |a Deep learning 
653 |a Food security 
653 |a Food industry 
653 |a Data analysis 
653 |a Modernization 
653 |a Quality assessment 
653 |a Pattern analysis 
653 |a Quality control 
653 |a Precision agriculture 
653 |a Seeds 
653 |a Sustainable development 
653 |a Real time 
653 |a Climate change 
700 1 |a Wan-Ke, Xia  |u College of Information and Electrical Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China; yangzhiyu@cau.edu.cn (Z.-Y.Y.); 2020301010225@cau.edu.cn (W.-K.X.) 
700 1 |a Hao-Qi, Chu  |u College of Land Science and Technology, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China; chuhaoqi@cau.edu.cn 
700 1 |a Wen-Hao, Su  |u College of Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China 
700 1 |a Rui-Feng, Wang  |u College of Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China 
700 1 |a Wang, Haihua  |u College of Information and Electrical Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China; yangzhiyu@cau.edu.cn (Z.-Y.Y.); 2020301010225@cau.edu.cn (W.-K.X.) 
773 0 |t Plants  |g vol. 14, no. 10 (2025), p. 1481 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212094297/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212094297/fulltextwithgraphics/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212094297/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch