A Localization Method for UAV Aerial Images Based on Semantic Topological Feature Matching

Na minha lista:
Detalhes bibliográficos
Publicado no:Remote Sensing vol. 17, no. 10 (2025), p. 1671
Autor principal: He, Jing
Outros Autores: Wu, Qian
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3212107527
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17101671  |2 doi 
035 |a 3212107527 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a He, Jing 
245 1 |a A Localization Method for UAV Aerial Images Based on Semantic Topological Feature Matching 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In order to address the problem of Unmanned Aerial Vehicles (UAVs) being difficult to locate in environments without Global Navigation Satellite System (GNSS) signals or with weak signals, this paper proposes a localization method for UAV aerial images based on semantic topological feature matching. Unlike traditional scene matching methods that rely on image-to-image matching technology, this approach uses semantic segmentation and the extraction of image topology feature vectors to represent images as patterns containing semantic visual references and the relative topological positions between these visual references. The feature vector satisfies scale and rotation invariance requirements, employs a similarity measurement based on Euclidean distance for matching and positioning between the target image and the benchmark map database, and validates the proposed method through simulation experiments. This method reduces the impact of changes in scale and direction on the image matching accuracy, improves the accuracy and robustness of matching, and significantly reduces the storage requirements for the benchmark map database. 
653 |a Databases 
653 |a Localization method 
653 |a Topology 
653 |a Deep learning 
653 |a Matching 
653 |a Image databases 
653 |a Image segmentation 
653 |a Unmanned aerial vehicles 
653 |a Storage requirements 
653 |a Consumption 
653 |a Image processing 
653 |a Methods 
653 |a Semantic segmentation 
653 |a Algorithms 
653 |a Localization 
653 |a Benchmarks 
653 |a Euclidean geometry 
653 |a Semantics 
653 |a Global navigation satellite system 
700 1 |a Wu, Qian 
773 0 |t Remote Sensing  |g vol. 17, no. 10 (2025), p. 1671 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212107527/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212107527/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212107527/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch