A MapReduce-Based Decision-Making Approach for Multiple Criteria Sorting †

Sparad:
Bibliografiska uppgifter
I publikationen:Systems vol. 13, no. 5 (2025), p. 312
Huvudupphov: Mao Xiaoxin
Övriga upphov: Du Zhanhe, Zheng Lanlan
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3212132060
003 UK-CbPIL
022 |a 2079-8954 
024 7 |a 10.3390/systems13050312  |2 doi 
035 |a 3212132060 
045 2 |b d20250101  |b d20251231 
084 |a 231636  |2 nlm 
100 1 |a Mao Xiaoxin 
245 1 |a A MapReduce-Based Decision-Making Approach for Multiple Criteria Sorting † 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In the context of big data and artificial intelligence, analyzing and extracting actionable insights from extensive datasets to enhance decision-making processes presents both intriguing opportunities and formidable challenges. Existing multiple criteria sorting (MCS) methodologies often struggle with the magnitude of these datasets, particularly in terms of time and memory requirements. Furthermore, traditional approaches typically rely on direct preference information, which can be cognitively demanding for decision-makers and may not scale effectively with increasing data complexity. This study introduces a scalable MCS approach grounded in the MapReduce framework, designed to handle extensive sets of alternatives and preference information in a parallel processing paradigm. The proposed approach utilizes an additive piecewise-linear value function as the underlying preference model, with model parameters inferred from assignment examples on a subset of reference alternatives through the application of preference disaggregation principles. To enable the parallel execution of the sorting procedure, a convex optimization model is formulated to estimate the parameters of the preference model. Subsequently, a parallel algorithm is devised to solve this optimization model, leveraging the MapReduce framework to process the set of reference alternatives and associated preference information concurrently, thereby accelerating computational efficiency. Additionally, the performance of the proposed approach is evaluated using a real-world dataset and a series of synthetic datasets comprising up to 400,000 alternatives. The findings demonstrate that this approach effectively addresses the MCS problem in the context of large sets of alternatives and extensive preference information. 
653 |a Parallel processing 
653 |a Big Data 
653 |a Datasets 
653 |a Integer programming 
653 |a Memory 
653 |a Multiple criterion 
653 |a Convexity 
653 |a Context 
653 |a Alternatives 
653 |a Optimization 
653 |a Decision making 
653 |a Preferences 
653 |a Algorithms 
653 |a Data analysis 
653 |a Linear programming 
653 |a Artificial intelligence 
653 |a Parameters 
653 |a Optimization models 
653 |a Synthetic data 
700 1 |a Du Zhanhe 
700 1 |a Zheng Lanlan 
773 0 |t Systems  |g vol. 13, no. 5 (2025), p. 312 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212132060/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3212132060/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212132060/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch