On the Duality of Codes over Non-Unital Commutative Ring of Order p2

Збережено в:
Бібліографічні деталі
Опубліковано в::Symmetry vol. 17, no. 5 (2025), p. 690
Автор: Alihia Tamador
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Короткий огляд:This paper establishes an extended theoretical framework centered on the duality of codes constructed over a special class of non-unital, commutative, local rings of order <inline-formula>p2</inline-formula>, where p is a prime satisfying <inline-formula>p≡1mod4</inline-formula> or <inline-formula>p≡3mod4</inline-formula>. The work expands the traditional scope of coding theory by developing and adapting a generalized recursive approach to produce quasi-self-dual and self-dual codes within this algebraic setting. While the method for code generation is rooted in the classical build-up technique, the primary focus is on the duality properties of the resulting codes—especially how these properties manifest under different congruence conditions on p. Computational examples are provided to illustrate the effectiveness of the proposed methods.
ISSN:2073-8994
DOI:10.3390/sym17050690
Джерело:Engineering Database