Forecasting Fed Beef Production: An Evaluation of Systems Forecasting by Parts for Optimal Survey History

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:ProQuest Dissertations and Theses (2025)
Үндсэн зохиолч: Dodd-Zakely, Brandon Thomas
Хэвлэсэн:
ProQuest Dissertations & Theses
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3212944477
003 UK-CbPIL
020 |a 9798315756538 
035 |a 3212944477 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Dodd-Zakely, Brandon Thomas 
245 1 |a Forecasting Fed Beef Production: An Evaluation of Systems Forecasting by Parts for Optimal Survey History 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The following study examines forecasts of fed beef production through a by-parts estimation framework to provide a more practical alternative to more complex simultaneous systems of equations. A disconnect exists between the academic literature and the methods commonly used in private industry decision making. Practical techniques employed by industry professionals hold promise in strengthening conversations around forecasting research. Recent shifts in cattle production, including elevated contributions of heifers in the slaughter mix and larger than anticipated weights in fed cattle, provide an appropriate case study that underscores the need to revisit past events in the development of new forecasting strategies. By analyzing survey history in the data selection process, examining analog time periods, and considering concerns of autocorrelated errors within Deterministic Trend / Deterministic Seasonality models, this study highlights that practical enhancements to forecast accuracy can be sustained by simple remedial measures. The results of this study demonstrate that (1) historical data selection can significantly impact forecast quality; (2) methods that allow for autocorrelated error corrections can improve model performance; (3) the effectiveness of different forecast estimation methods varies by the selected horizon; and (4) the use of more simplistic assumptions underlying a forecast model can produce competitive and accurate results. 
653 |a Agricultural economics 
653 |a Economics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3212944477/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3212944477/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch