The effect of rudder deflections on hydrodynamic performance of underwater vehicles during dynamic maneuver

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Engineering and Applied Science vol. 72, no. 1 (Dec 2025), p. 65
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3213014334
003 UK-CbPIL
022 |a 1110-1903 
022 |a 1110-1393 
024 7 |a 10.1186/s44147-025-00626-8  |2 doi 
035 |a 3213014334 
045 2 |b d20251201  |b d20251231 
245 1 |a The effect of rudder deflections on hydrodynamic performance of underwater vehicles during dynamic maneuver 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a A computational study is conducted for the flow over the submarine under the rudder deflection condition, considering the complicated flow characteristics of a submersible under maneuvering conditions. The STAR-CCM + is used to simulate the rudder force test over an extensive variety of rudder angles using the submarine model Defense Advanced Research Projects Agency (DARPA) SUBOFF. However, in the present research, the force and moment-related parameters (also known as the hydrodynamic parameters) and their coefficients are calculated with the deflection of control surfaces from − 15 to + 15° with a step increase of 3° while dynamically rotating the complete body at multiple drift angles. Dynamic yaw maneuvers with time-step increments were applied to the body in the current study. Furthermore, the control surface was actuated at a specific angle; the actuation was rigidly controlled. The hydrodynamic coefficients of DARPA SUBOFF were calculated using this configuration, and it was discovered that these coefficients’ trends change systematically while the yaw maneuver is executed. At multiple angles of control surfaces, the coefficient of drag (Cd), side slip coefficient (Cy), and yaw moment coefficient (Cn) noticed for different drift angles of a body ranged from 0.005 to 0.0415, − 0.0675 to 0.0625, and − 0.022 to 0.017, respectively. At different speeds ranging from 3.05 to 6.10 m/s, the estimated findings obtained for resistance and hydrodynamic coefficients are compared with experimental data. 
653 |a Simulation 
653 |a Actuation 
653 |a Hydrodynamic coefficients 
653 |a Control algorithms 
653 |a Investigations 
653 |a Vortices 
653 |a Sideslip 
653 |a Maneuvers 
653 |a Flow characteristics 
653 |a Rotating bodies 
653 |a Rudders 
653 |a Automation 
653 |a Underwater vehicles 
653 |a Control surfaces 
653 |a Reynolds number 
653 |a Parameters 
653 |a Yawing moments 
653 |a Independent study 
653 |a Research projects 
653 |a Deflection 
773 0 |t Journal of Engineering and Applied Science  |g vol. 72, no. 1 (Dec 2025), p. 65 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3213014334/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3213014334/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3213014334/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch