Quality Inspection in Casting Aluminum Parts: A Machine Vision System for Filings Detection and Hole Inspection

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Intelligent & Robotic Systems vol. 111, no. 2 (Jun 2025), p. 53
Autor principal: Nascimento, Rui
Altres autors: Ferreira, Tony, Rocha, Cláudia D., Filipe, Vítor, Silva, Manuel F., Veiga, Germano, Rocha, Luis
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3213209910
003 UK-CbPIL
022 |a 0921-0296 
022 |a 1573-0409 
024 7 |a 10.1007/s10846-025-02251-2  |2 doi 
035 |a 3213209910 
045 2 |b d20250601  |b d20250630 
084 |a 137834  |2 nlm 
100 1 |a Nascimento, Rui  |u INESC TEC-Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal (GRID:grid.20384.3d) (ISNI:0000 0001 0756 9687); UTAD - University of Trás-os-Montes and Alto Douro, Vila Real, Portugal (GRID:grid.12341.35) (ISNI:0000 0001 2182 1287) 
245 1 |a Quality Inspection in Casting Aluminum Parts: A Machine Vision System for Filings Detection and Hole Inspection 
260 |b Springer Nature B.V.  |c Jun 2025 
513 |a Journal Article 
520 3 |a Quality inspection inspection systems are critical for maintaining product integrity. Being a repetitive task, when performed by operators only, it can be slow and error-prone. This paper introduces an automated inspection system for quality assessment in casting aluminum parts resorting to a robotic system. The method comprises two processes: filing detection and hole inspection. For filing detection, five deep learning modes were trained. These models include an object detector and four instance segmentation models: YOLOv8, YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, and Mask R-CNN, respectively. Among these, YOLOv8s-seg exhibited the best overall performance, achieving a recall rate of 98.10%, critical for minimizing false negatives and yielding the best overall results. Alongside, the system inspects holes, utilizing image processing techniques like template-matching and blob detection, achieving a 97.30% accuracy and a 2.67% Percentage of Wrong Classifications. The system improves inspection precision and efficiency while supporting sustainability and ergonomic standards, reducing material waste and reducing operator fatigue. 
653 |a Fatigue 
653 |a Template matching 
653 |a Quality assessment 
653 |a Image analysis 
653 |a Inspection 
653 |a Machine vision 
653 |a Image segmentation 
653 |a Aluminum 
653 |a Instance segmentation 
653 |a Computer vision 
653 |a Machine learning 
653 |a Image processing 
653 |a Vision systems 
653 |a Filing 
653 |a Image processing systems 
700 1 |a Ferreira, Tony  |u INESC TEC-Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal (GRID:grid.20384.3d) (ISNI:0000 0001 0756 9687) 
700 1 |a Rocha, Cláudia D.  |u INESC TEC-Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal (GRID:grid.20384.3d) (ISNI:0000 0001 0756 9687) 
700 1 |a Filipe, Vítor  |u INESC TEC-Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal (GRID:grid.20384.3d) (ISNI:0000 0001 0756 9687); UTAD - University of Trás-os-Montes and Alto Douro, Vila Real, Portugal (GRID:grid.12341.35) (ISNI:0000 0001 2182 1287) 
700 1 |a Silva, Manuel F.  |u INESC TEC-Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal (GRID:grid.20384.3d) (ISNI:0000 0001 0756 9687); ISEP - Polytechnic of Porto, Porto, Portugal (GRID:grid.20384.3d) 
700 1 |a Veiga, Germano  |u INESC TEC-Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal (GRID:grid.20384.3d) (ISNI:0000 0001 0756 9687) 
700 1 |a Rocha, Luis  |u INESC TEC-Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal (GRID:grid.20384.3d) (ISNI:0000 0001 0756 9687) 
773 0 |t Journal of Intelligent & Robotic Systems  |g vol. 111, no. 2 (Jun 2025), p. 53 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3213209910/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3213209910/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch