Graph neural network approach with spatial structure to anomaly detection of network data

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Big Data vol. 12, no. 1 (Apr 2025), p. 105
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3213694212
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01149-y  |2 doi 
035 |a 3213694212 
045 2 |b d20250401  |b d20250430 
245 1 |a Graph neural network approach with spatial structure to anomaly detection of network data 
260 |b Springer Nature B.V.  |c Apr 2025 
513 |a Journal Article 
520 3 |a Network anomaly detection using graph-structured data is a critical task in data mining and cybersecurity, involving the identification of unusual patterns within a network by analyzing its structure as a graph. However, network data often exhibit high dimensionality and sparsity, complicating the detection of meaningful rarity anomalous patterns. Accurate modeling the distance between the nodes in spatial structure is particularly challenging. Additionally, the scarcity of labelled anomaly data for training supervised models can hinder the accuracy and effectiveness of anomaly detection methods. To address these challenges, we propose a novel method that enhances distance feature extraction by embedding graph data into hyperbolic space, which naturally captures hierarchical and relational structures in graphs. This method has been validated both mathematically and experimentally. Specifically, a gain factor derived from commonality metrics is introduced, adhering to conformal properties and preserving relative distances in space. The gain factor enhances the precision of edge weight features used for graph construction, ensuring that relative distances between points are accurately preserved in the embedding space. Data augmentation techniques are employed to address the issue of the scarcity of labelled data. Results demonstrate that optimizing edge weights yields greater improvements in anomaly detection performance compared to optimizing node attributes, achieving twice the contribution. Optimizing edge weights is more effective in capturing interaction anomalies between nodes, whereas focusing solely on node attributes may overlook subtle irregularities at the relational level. Furthermore, findings suggest that the proposed approach is suitable for complex anomaly detection environments due to its robustness and scalability. 
653 |a Structured data 
653 |a Data augmentation 
653 |a Data mining 
653 |a Anomalies 
653 |a Commonality 
653 |a Graph neural networks 
653 |a Embedding 
653 |a Cybersecurity 
653 |a Hyperbolic coordinates 
653 |a Nodes 
653 |a Effectiveness 
653 |a Big Data 
653 |a Deep learning 
653 |a Neural networks 
653 |a Algorithms 
653 |a Extraction 
653 |a Property 
653 |a Graphs 
653 |a Robustness 
653 |a Scarcity 
653 |a Networks 
653 |a Labeling 
653 |a Data 
653 |a Attributes 
653 |a Information retrieval 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Apr 2025), p. 105 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3213694212/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3213694212/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch