Numerical Scheme for the Computational Study of Two Dimensional Diffusion and Burgers’ Systems with Stability and Error Estimate

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Nonlinear Mathematical Physics vol. 32, no. 1 (Dec 2025), p. 25
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3213931186
003 UK-CbPIL
022 |a 1402-9251 
022 |a 1776-0852 
024 7 |a 10.1007/s44198-025-00277-6  |2 doi 
035 |a 3213931186 
045 2 |b d20251201  |b d20251231 
245 1 |a Numerical Scheme for the Computational Study of Two Dimensional Diffusion and Burgers’ Systems with Stability and Error Estimate 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This paper demonstrates a numerical stratagem for the solution of two dimensional single and coupled partial differential equations, using the new version of the Haar wavelets namely: the scale-3 Haar wavelets (S3HW), combined with the finite difference formulation. The proposed method consists of two phases. The first phase deals with the numerical estimation of the temporal derivative via finite difference which converts the problem to time discrete form. The second phase describes, the approximation of the spatial derivatives along with solution, adopting S3HW. Then, the collocation technique is implemented to transform the resultant system to the set of linear algebraic equations. Solution of the linear system gives the unknown wavelet coefficients which utilized to determine the numerical solutions. Afterwards, the error, convergence, and stability analysis are conducted and deduced a new error estimate. Besides, the numerical simulations are done to verify the scheme and the obtained theoretical findings (convergence and stability). To validate, the performance of the present scheme different error measures <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="44198_2025_277_Article_IEq1.gif" />, and relative error <inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="44198_2025_277_Article_IEq2.gif" /> are determined numerically. The scheme is also compared in terms of error with the scale-2 Haar wavelets and radial basis functions based algorithms. Overall judgement shows, that the numerical results of the developed scheme are in good agreement with the exact solution and the aforementioned methods in the literature. 
653 |a Finite volume method 
653 |a Partial differential equations 
653 |a Convergence 
653 |a Mathematical analysis 
653 |a Linear algebra 
653 |a Radial basis function 
653 |a Integrals 
653 |a Finite difference method 
653 |a Linear systems 
653 |a Exact solutions 
653 |a Approximation 
653 |a Algorithms 
653 |a Stability analysis 
773 0 |t Journal of Nonlinear Mathematical Physics  |g vol. 32, no. 1 (Dec 2025), p. 25 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3213931186/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3213931186/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3213931186/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch