EEG recognition of natural hand movements based on transfer learning

Guardado en:
Detalles Bibliográficos
Publicado en:Nanjing Xinxi Gongcheng Daxue Xuebao vol. 17, no. 2 (2025), p. 245
Autor principal: Muhui, Xue
Otros Autores: Baoguo, Xu, Lang, Li, Aiguo, Song
Publicado:
Nanjing University of Information Science & Technology
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3214123935
003 UK-CbPIL
022 |a 1674-7070 
024 7 |a 10.13878/j.cnki.jnuist.20240512002  |2 doi 
035 |a 3214123935 
045 2 |b d20250401  |b d20250531 
084 |a 142128  |2 nlm 
100 1 |a Muhui, Xue 
245 1 |a EEG recognition of natural hand movements based on transfer learning 
260 |b Nanjing University of Information Science & Technology  |c 2025 
513 |a Journal Article 
520 3 |a In the field of Brain-Computer Interface ( BCI) the recognition of natural hand movements through electroencephalography ( EEG) is crucial for achieving natural and precise human-machine interaction. However, attempts to enhance model generalization ability across different subjects using transfer learning are still rare in studies focusing on natural hand movement paradigms. Here, we investigate three natural hand movement paradigms of grasping, pinching and twisting through EEG experiments, and validate the effectiveness of two transfer learning algorithms , namely CA-MDM ( Covariance matrix centroid Alignment-Minimum Distance to Riemannian Mean) and CA-JDA ( Covariance matrix centroid Alignment-Joint Distribution Adaptation) on our experimental dataset. The results show that CA-JDA achieves average accuracies of 60. 51%+5. 78% and 34. 89% +4. 42% in binary and quadruple classification tasks, respectively, while CA-MDM performs at 63. 88% +4. 59% and 35. 71% +4. 84% in the same tasks, highlighting the advantages of Riemannian space-based classifiers in handling covariance features. This study not only confirms the feasibility of transfer learning in natural hand movement paradigms but also aids in reducing calibration time for BCI systems and implementing natural human-machine interaction strategies. 
653 |a Covariance matrix 
653 |a Algorithms 
653 |a Electroencephalography 
653 |a Alignment 
653 |a Human-computer interface 
653 |a Machine learning 
653 |a Hand (anatomy) 
653 |a Human-computer interaction 
653 |a Recognition 
653 |a Centroids 
653 |a Environmental 
700 1 |a Baoguo, Xu 
700 1 |a Lang, Li 
700 1 |a Aiguo, Song 
773 0 |t Nanjing Xinxi Gongcheng Daxue Xuebao  |g vol. 17, no. 2 (2025), p. 245 
786 0 |d ProQuest  |t East & South Asia Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3214123935/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3214123935/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch