Advancing Augmented Reality: Localization Algorithm Analysis and Pre-Positioning Virtual Objects

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Soltanieh, Setareh
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3214129094
003 UK-CbPIL
020 |a 9798311909402 
035 |a 3214129094 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Soltanieh, Setareh 
245 1 |a Advancing Augmented Reality: Localization Algorithm Analysis and Pre-Positioning Virtual Objects 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This thesis evaluates localization algorithms for Augmented Reality (AR) applications, focusing on five state-of-the-art monocular-inertial localization algorithms— OpenVINS, VINS-Mono, ORB-SLAM3, Kimera-VIO, and DM-VIO. These algorithms were assessed using publicly available datasets (EuRoC) and custom datasets collected with handheld devices, simulating typical AR user movements. The evaluation highlights trade-offs in accuracy, robustness, and initialization time, providing insights into their suitability for various AR scenarios. A comparative analysis with Google’s ARCore reveals that while custom algorithms have higher precision in outdoor environments, ARCore demonstrates superior precision indoors.A significant contribution of this work is the development of an AR pipeline capable of accurately rendering virtual assets in their intended real-world locations without relying on pre-existing 3D maps. The pipeline comprises four threads: data capture, origin setting, localization, and rendering. It incorporates fiducial markers such as AprilTags to seamlessly align the real and virtual worlds by establishing a shared origin between them. 
653 |a Augmented reality 
653 |a Social exclusion 
653 |a Photographs 
653 |a Computer engineering 
653 |a Information science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3214129094/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3214129094/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch