Analytic Buckling Solution of Composite Classical Rectangular Thin Plates Using Galerkin Variational Approach

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Advances in Civil Engineering vol. 2025 (2025)
Egile nagusia: Thompson Edozie Okeke
Beste egile batzuk: Festus Chukwudi Onyeka, Onyia, Uzor, Ekwueme, Benjamin Nnamdi
Argitaratua:
John Wiley & Sons, Inc.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3214377727
003 UK-CbPIL
022 |a 1687-8086 
022 |a 1687-8094 
024 7 |a 10.1155/adce/4587827  |2 doi 
035 |a 3214377727 
045 2 |b d20250101  |b d20251231 
084 |a 130215  |2 nlm 
100 1 |a Thompson Edozie Okeke  |u Department of Civil Engineering Faculty of Engineering University of Nigeria Nsukka 410101 Enugu State Nigeria 
245 1 |a Analytic Buckling Solution of Composite Classical Rectangular Thin Plates Using Galerkin Variational Approach 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a This paper focuses on investigating the mechanical buckling behavior of composite and orthotropic classical rectangular plates using the Galerkin theory. By utilizing the classical plate theory of elasticity, the governing equations for the functionally graded plate material subjected to a uniaxially distributed load along the x and y axes are derived based on the principle of work energy. Consequently, the displacement function is determined as the solution to a differential equation that satisfies specific boundary conditions. The equilibrium expression derived from the work-energy equation is then minimized and analytically solved to determine the stresses and critical buckling loads of an orthotropic composite rectangular plate. The critical buckling loads of all edges, including clamped and simply supported orthotropic and isotropic thin rectangular plates with aspect ratios ranging from 0.1 to 3, are calculated and compared with existing literature to assess the stiffness of isotropic and orthotropic plates. The findings reveal that the critical buckling load of a clamped plate decreases as the aspect ratio increases from 0.1 to 1 but increases for aspect ratios between 1 and 3. The average percentage variation of critical buckling load values obtained from previous studies using orthotropic and isotropic (classical lamination plate theory [CLPT]) materials is found to be 1.93% and 3.65%, respectively. Additionally, it is observed that the critical buckling load of clamped edges in isotropic plates is lower than that of orthotropic plates at lower aspect ratios (0.4–1.0) but higher at higher aspect ratios (above 1.0). The results indicate that plates with all-round clamped boundaries exhibit higher buckling loads due to their effective fixation at all boundaries, which provides greater resistance to deformation and buckling compared to plates with all edges simply supported, where there is more flexibility for deformation under loads. This highlights the influence of boundary conditions on the critical buckling load of the plate. Furthermore, a significant percentage difference is noted when comparing approximate solutions, while a low percentage difference of 0.43% with the author’s derived displacement function indicates close agreement, demonstrating the high level of accuracy and reliability of the proposed model in predicting buckling load of plates. Hence, it can be recommended for stability analysis, especially where the material properties need to be controlled in a specific direction to optimize performance. 
653 |a Load 
653 |a Plate material 
653 |a Material properties 
653 |a Deformation 
653 |a Buckling 
653 |a Aspect ratio 
653 |a Boundary conditions 
653 |a Clamping 
653 |a Deformation effects 
653 |a Plate theory 
653 |a Energy 
653 |a Thin plates 
653 |a Stability analysis 
653 |a Galerkin method 
653 |a Composite materials 
653 |a Construction 
653 |a Orthotropic plates 
653 |a Rectangular plates 
653 |a Boundaries 
653 |a Functionally gradient materials 
653 |a Engineering 
653 |a Methods 
653 |a Finite element analysis 
653 |a Differential equations 
653 |a Deformation resistance 
653 |a Energy equation 
700 1 |a Festus Chukwudi Onyeka  |u Department of Civil Engineering College of Engineering Michael Okpara University of Agriculture Umudike 440109 Abia State Nigeria 
700 1 |a Onyia, Uzor  |u Department of Civil Engineering Faculty of Engineering University of Nigeria Nsukka 410101 Enugu State Nigeria 
700 1 |a Ekwueme, Benjamin Nnamdi  |u Department of Civil Engineering College of Engineering Gregory University Uturu 440109 Abia State Nigeria 
773 0 |t Advances in Civil Engineering  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3214377727/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3214377727/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3214377727/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch