Enhancing EEG Foundation Models via Dual-Branch Self-Distillation With Bi-Pretext Tasks

Salvato in:
Dettagli Bibliografici
Pubblicato in:ProQuest Dissertations and Theses (2025)
Autore principale: Hung, Wei-Lun Allen
Pubblicazione:
ProQuest Dissertations & Theses
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:We present a dual-branch self-supervised learning framework for EEG representation learning, combining masked reconstruction and clustering-based objectives. Evaluated across five diverse downstream tasks, our method achieves state-of-the-art performance under both linear probing and fine-tuning protocols. Ablation and visualization analyses confirm the robustness and transferability of the learned features. Our approach offers a promising foundation for future advances in general-purpose EEG analysis.
ISBN:9798315778073
Fonte:ProQuest Dissertations & Theses Global