Advancing CH4 and N2O retrieval strategies for NDACC/IRWG FTIR observations with the support of airborne in situ measurements

Gardado en:
Detalles Bibliográficos
Publicado en:Atmospheric Measurement Techniques vol. 18, no. 11 (2025), p. 2353
Autor Principal: Ortega, Ivan
Outros autores: Hannigan, James W, Baier, Bianca C, McKain, Kathryn, Smale, Dan
Publicado:
Copernicus GmbH
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3214854293
003 UK-CbPIL
022 |a 1867-1381 
022 |a 1867-8548 
024 7 |a 10.5194/amt-18-2353-2025  |2 doi 
035 |a 3214854293 
045 2 |b d20250101  |b d20251231 
084 |a 123616  |2 nlm 
100 1 |a Ortega, Ivan  |u Atmospheric Chemistry Observations & Modeling, NSF National Center for Atmospheric Research, Boulder, Colorado, USA 
245 1 |a Advancing CH<sub>4</sub> and N<sub>2</sub>O retrieval strategies for NDACC/IRWG FTIR observations with the support of airborne in situ measurements 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Atmospheric methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with significant impacts on climate change. Accurate measurement of their atmospheric abundance is essential for understanding their sources, sinks, and the impact of human activities on the atmosphere. Ground-based high-resolution Fourier-transform infrared (FTIR) observations, employed by collaborative international initiatives like the Infrared Working Group (IRWG) within the Network for the Detection of Atmospheric Composition Change (NDACC), play a vital role in retrieving the atmospheric amounts of these gases. Network-wide consistent data products rely on consistent observations and retrievals. Recent developments in spectroscopy, a priori data, and retrieval software and techniques underscore the necessity to revisit the current retrieval strategies for all NDACC/IRWG species. This study investigates various retrieval strategies of CH4 and N2O utilizing high-resolution FTIR observations in Boulder, Colorado, and compares them with unique airborne in situ measurements. The initial focus is on characterizing retrieval differences across spectroscopy databases. While it is challenging to identify the best retrievals purely based on spectroscopy, as they produce similar outcomes, notable differences in profile shapes and magnitudes underscore the importance of independent validation. Specifically, when multiyear independent nearby AirCore and aircraft in situ profile measurements are used to evaluate vertical distributions and biases in partial columns, they reveal excellent agreement in relative differences with FTIR retrievals and thereby strengthen confidence in the assessment. The final optimized retrievals for CH4 and N2O are presented, incorporating quantitative fitting results and comparisons of vertical profiles as well as partial and total columns. We find that employing a priori profiles using the latest simulations of the Whole Atmosphere Community Climate Model (WACCM) enhances accuracy relative to in situ profiles. While the HITRAN 2020 spectroscopic database is effective for N2O, ATM 2020 provides better results for CH4, with a slight improvement observed when paired with the water vapor line list from the German Aerospace Center (DLR); however, this improvement may be site-dependent. Regarding regularization, both first-order Tikhonov and optimal estimation produce comparable outcomes, as long as the fitted profile degrees of freedom remain between 2 and 2.5. Correspondingly, profile result comparisons yield biases of <inline-formula>-0.08</inline-formula> <inline-formula>±</inline-formula> 0.38 % and 0.89 <inline-formula>±</inline-formula> 0.28 % for tropospheric and stratospheric layers of CH4 relative to AirCore, respectively, whereas they yield a bias of 0.39 <inline-formula>±</inline-formula> 0.42 % for aircraft comparisons in the troposphere. For N2O, the bias in the troposphere using aircraft measurements is approximately 0.18 <inline-formula>±</inline-formula> 0.2 %. Uncertainty budgets combining random and systematic sources are provided. Random errors, mainly stemming from temperature profile uncertainties and measurement noise, dominate in the troposphere for both gases, with a retrieval random error of 0.5 %. Systematic errors primarily arise from HITRAN-based spectral line parameters, predominantly the line intensity and air-broadened half-width. These findings contribute to advancing our understanding of atmospheric composition and will support the improvement of a harmonized approach for all IRWG/NDACC sites. 
610 4 |a National Oceanic & Atmospheric Administration--NOAA 
651 4 |a United States--US 
651 4 |a Colorado 
653 |a Databases 
653 |a Bias 
653 |a Collaboration 
653 |a Troposphere 
653 |a Methane 
653 |a Atmosphere 
653 |a Atmospheric methane 
653 |a Greenhouse gases 
653 |a Temperature profiles 
653 |a Working groups 
653 |a Water vapor 
653 |a In situ measurement 
653 |a Human influences 
653 |a Uncertainty 
653 |a Climate change 
653 |a Spectroscopy 
653 |a Aircraft 
653 |a Systematic errors 
653 |a Regularization 
653 |a Atmospheric composition 
653 |a Temperature profile 
653 |a High resolution 
653 |a Retrieval 
653 |a Nitrous oxide 
653 |a Water vapour 
653 |a Vertical profiles 
653 |a Indium antimonide 
653 |a Mercury cadmium telluride 
653 |a Fourier transforms 
653 |a Infrared spectroscopy 
653 |a Random errors 
653 |a Spectrum analysis 
653 |a Noise measurement 
653 |a Climate models 
653 |a Regularization methods 
653 |a Atmospheric chemistry 
653 |a Line spectra 
653 |a Environmental 
700 1 |a Hannigan, James W  |u Atmospheric Chemistry Observations &amp; Modeling, NSF National Center for Atmospheric Research, Boulder, Colorado, USA 
700 1 |a Baier, Bianca C  |u Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA 
700 1 |a McKain, Kathryn  |u Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA 
700 1 |a Smale, Dan  |u National Institute of Water and Atmospheric Research, Lauder, Central Otago, Aotearoa / New Zealand 
773 0 |t Atmospheric Measurement Techniques  |g vol. 18, no. 11 (2025), p. 2353 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3214854293/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3214854293/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3214854293/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch