Predicting the tensile properties of heat treated and non-heat treated LPBFed AlSi10Mg alloy using machine learning regression algorithms

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:PLoS One vol. 20, no. 6 (Jun 2025), p. e0324049
מחבר ראשי: Jatti, Vijaykumar S
מחברים אחרים: Saiyathibrahim, A, Yadav, Arvind, Murali, Krishnan R, Jayaprakash, B, Kaushal, Sumit, Jatti, Vinaykumar S, Jatti, Ashwini V, Jatti, Savita V, Kumar, Abhinav, Gouadria, Soumaya, Bonyah, Ebenezer
יצא לאור:
Public Library of Science
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3215034480
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0324049  |2 doi 
035 |a 3215034480 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a Jatti, Vijaykumar S 
245 1 |a Predicting the tensile properties of heat treated and non-heat treated LPBFed AlSi10Mg alloy using machine learning regression algorithms 
260 |b Public Library of Science  |c Jun 2025 
513 |a Journal Article 
520 3 |a In this study, the ability of machine learning algorithms to predict tensile properties of both heat-treated and non-heat treated LPBFed AlSi10Mg alloy is investigated. The data was analyzed using various Machine Learning Regression (MLR) models such as Linear Regression (LR), Gaussian Process Regression (GPR), Random Forest Regression (RFR), and Decision Tree (DT). The AlSi10Mg alloys, heat-treated and non heat-treated, had different tensile characteristics. The tensile characteristics were forecasted using trained and evaluated MLR models. Because the performance of various MLR models has been verified by several performance indicators, such as Root Mean Square Error (RMSE), R2 (coefficient of determination), Mean Square Error (MSE), and Mean Absolute Error (MAE). Moreover, scatter plots were made for checking the accuracy of the forecast. The GPR model demonstrated better prediction performance than the other three models, i.e., higher R2 values and lower error values for the heat-treated samples. For predicting the UTS value of non-heat treated samples, the LR model performs very well with R2 of 1.000. In that case, GPR has the better predictive performance for the other tensile features in non-heat treated samples. Summing up, it is obvious that GPR is well capable of predicting tensile properties of AlSi10Mg alloy with high precision. This indicates how important GPR is to additive manufacturing to achieve great quality. 
653 |a Solidification 
653 |a Tensile properties 
653 |a Regression analysis 
653 |a Heat treatment 
653 |a Aviation 
653 |a Heat 
653 |a Machine learning 
653 |a Additive manufacturing 
653 |a Learning algorithms 
653 |a Decision trees 
653 |a Regression 
653 |a Lasers 
653 |a Root-mean-square errors 
653 |a Neural networks 
653 |a Computer aided design--CAD 
653 |a 3-D printers 
653 |a Algorithms 
653 |a Gaussian process 
653 |a Stainless steel 
653 |a Methods 
653 |a Alloys 
653 |a Aluminum base alloys 
653 |a Product development 
653 |a Economic 
700 1 |a Saiyathibrahim, A 
700 1 |a Yadav, Arvind 
700 1 |a Murali, Krishnan R 
700 1 |a Jayaprakash, B 
700 1 |a Kaushal, Sumit 
700 1 |a Jatti, Vinaykumar S 
700 1 |a Jatti, Ashwini V 
700 1 |a Jatti, Savita V 
700 1 |a Kumar, Abhinav 
700 1 |a Gouadria, Soumaya 
700 1 |a Bonyah, Ebenezer 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0324049 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3215034480/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3215034480/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3215034480/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch