Kernel Density Estimation and Convolution

Uloženo v:
Podrobná bibliografie
Vydáno v:ProQuest Dissertations and Theses (2025)
Hlavní autor: Tenkorang, Nicholas
Vydáno:
ProQuest Dissertations & Theses
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3215569988
003 UK-CbPIL
020 |a 9798315789178 
035 |a 3215569988 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Tenkorang, Nicholas 
245 1 |a Kernel Density Estimation and Convolution 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Kernel Density Estimation (KDE) is a widely used technique for estimating the probability density function of a random variable. In this study, we revisit KDE through the lens of convolution and extend this perspective to special cases such as positive, bounded and heavy tailed random variables. Building on this foundation, we propose a novel simulation-based density estimation method that generates new data by adding noise to observed values and then smoothing the resulting histogram using splines. A minor adjustment to natural cubic splines is required to ensure nonnegative estimates. The noise is drawn from a class of bounded polynomial kernel densities obtained via convolution of uniform random variables, with the smoothing parameter naturally defined by the support bound. A practical choice for this parameter is determined by a percentile of the neighboring distances among sorted data. The proposed method offers enhanced flexibility for handling variables with specific support constraints (e.g., positive, bounded and heavy tailed) through simple transformations, and numerical studies demonstrate its competitive or superior performance compared to standard KDE across various scenarios. 
653 |a Statistics 
653 |a Mathematics 
653 |a Computational physics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3215569988/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3215569988/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch