Controlling Noise Budget of Fully Homomorphic Encryption in Secure Machine Learning

Guardado en:
Detalles Bibliográficos
Publicado en:PQDT - Global (2025)
Autor principal: Mahmood, Fatima
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3215574598
003 UK-CbPIL
020 |a 9798315783046 
035 |a 3215574598 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Mahmood, Fatima 
245 1 |a Controlling Noise Budget of Fully Homomorphic Encryption in Secure Machine Learning 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Fully Homomorphic Encryption (FHE) offers a promising path to privacy preserving machine learning, but its widespread adoption is constrained by the challenge of noise budget management. This thesis analyzes the control of noise growth in encrypted logistic regression models using the CKKS encryption scheme via the HEAAN library, within the iDASH2017 framework. A two level parameter tuning methodology was developed, modifying internal encryption settings and adjusting runtime parameters to explore over 720 unique configurations. The experiment was automated through a Python based pipeline that included command execution, result logging, CSV merging, and 3D visualization. Three algorithms were developed: a noise budget simulation tool, a log retrieval mechanism, and a parameter suggestion engine. These tools were applied across multiple datasets to systematically identify optimal configurations that maximize noise budget utilization without causing execution failure. The results revealed key trends linking encryption parameters to model accuracy and computational stability, with parameter adjustments improving both the Area Under the Curve (AUC) and execution depth. The findings contribute a practical framework for executing encrypted machine learning tasks while maintaining both data confidentiality and operational feasibility. The developed heuristics and evaluation strategies serve as a foundation for future research in adaptive, efficient, and scalable privacy-preserving machine learning. 
653 |a Computer science 
653 |a Computer engineering 
653 |a Acoustics 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3215574598/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3215574598/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch