Span-Based Information Extraction and Beyond

Na minha lista:
Detalhes bibliográficos
Publicado no:ProQuest Dissertations and Theses (2025)
Autor principal: Ding, Yifan
Publicado em:
ProQuest Dissertations & Theses
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3215670312
003 UK-CbPIL
020 |a 9798280702011 
035 |a 3215670312 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Ding, Yifan 
245 1 |a Span-Based Information Extraction and Beyond 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Span-based information extraction (SIE) is a set of natural language processing and information extraction tasks which aim to extract the span of interest from digital text and assign corresponding span classes that describe the nature of that text. SIE is essential yet challenging. On one hand, the development of SIE directly reflects natural language processing especially on text understanding. On the other hand, SIE can link digital text to knowledge base and knowledge graph entries, which can enhance the background information of the highlighted text. In this thesis, I focus on SIE tasks with four parts. (1) Foundations of Span-based Information Extraction. This section outlines the concepts and history of this task.(2) Models of Span-based Information Extraction. This section introduces our presented three SIE models including Ask-and-Verify, EntGPT, and G3. (3) Applications of Span-based Information Extraction. This section introduces two applications of SIE including SIE for multi-choice question answering and SIE to enhance trust of plain text. (4) Limitations and Future Work Beyond Span-based Information Extraction. This section covers limitations of SIE and some directions for future work. 
653 |a Computer engineering 
653 |a Computer science 
653 |a Information science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3215670312/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3215670312/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch