Optimizing learning outcomes: a deep dive into hybrid AI models for adaptive educational feedback

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:Journal of Big Data vol. 12, no. 1 (Jun 2025), p. 144
Foilsithe / Cruthaithe:
Springer Nature B.V.
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3216234723
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01187-6  |2 doi 
035 |a 3216234723 
045 2 |b d20250601  |b d20250630 
245 1 |a Optimizing learning outcomes: a deep dive into hybrid AI models for adaptive educational feedback 
260 |b Springer Nature B.V.  |c Jun 2025 
513 |a Journal Article 
520 3 |a Accurate prediction of student performance is essential for the creation of adaptive learning frameworks and the best utilization of educational strategies. In this work, we apply ensemble learning and neural networks to investigate data from multiple sources about students, two real educational datasets from Kaggle, and two synthetically generated datasets. A Python-based generative script was used to create one synthetic dataset; another synthetic dataset is created by augmenting a smaller Kaggle dataset while keeping its original statistical distribution. The Integrated Synthetic Data will make the model more robust, mitigate class imbalance, and generalize predictively in a much better way across heterogeneous educational data. In this paper, we implement several ensemble models-AdaBoost, Gradient Boosting, XGBoost, LightGBM, and CatBoost-and deep learning architectures such as Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Recurrent Neural Networks (RNN). These models are evaluated using accuracy, precision, recall, F1-score, and ROC-AUC to assess their predictive effectiveness. Experimental results demonstrate that CatBoost outperforms other ensemble models with an accuracy of 0.7143 and an F1-score of 0.7338, while CNN achieves the highest performance for sequential data (accuracy: 0.6786). ROC-AUC analysis confirms CatBoost and XGBoost as top-performing classifiers, while CNN and DNN exhibit superior capability in handling temporal patterns. The study highlights the impact of dataset augmentation and synthetic data generation on improving predictive accuracy in educational data mining, reinforcing the importance of data-centric approaches for building intelligent, and evidence-driven educational systems. The learning feedback has been made available via a user-friendly webserver at: <ext-link xlink:href="https://khan-learning-feedback.streamlit.app/" ext-link-type="uri">https://khan-learning-feedback.streamlit.app/</ext-link>. 
653 |a Accuracy 
653 |a Datasets 
653 |a Data augmentation 
653 |a Data mining 
653 |a Feedback 
653 |a Education 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Recurrent neural networks 
653 |a Deep learning 
653 |a Machine learning 
653 |a Ensemble learning 
653 |a Synthetic data 
653 |a Adaptive learning 
653 |a Big Data 
653 |a Models 
653 |a Recurrent 
653 |a Learning 
653 |a Predictions 
653 |a Data 
653 |a Classifiers 
653 |a Educational systems 
653 |a Academic achievement 
653 |a Short term memory 
653 |a Recall 
653 |a Temporal patterns 
653 |a Augmentation 
653 |a Networks 
653 |a Intelligence 
653 |a Learning outcomes 
653 |a Imbalance 
653 |a Students 
653 |a Information retrieval 
653 |a Artificial intelligence 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Jun 2025), p. 144 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216234723/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216234723/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch