A Generative Adversarial Imitation Learning-based Unit Commitment Strategy with Renewable Distributed Generators

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Physics: Conference Series vol. 3015, no. 1 (May 2025), p. 012010
Autor principal: Cheng, Honghu
Altres autors: Li, Yongbo, Jiang, Hailong, Sun, Wenbing, Chao, Wei, Huang, Xia
Publicat:
IOP Publishing
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3216358145
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3015/1/012010  |2 doi 
035 |a 3216358145 
045 2 |b d20250501  |b d20250531 
100 1 |a Cheng, Honghu  |u Anhui Power Exchange Center Co., Ltd. , Hefei, Anhui Province, 230022, PR China 
245 1 |a A Generative Adversarial Imitation Learning-based Unit Commitment Strategy with Renewable Distributed Generators 
260 |b IOP Publishing  |c May 2025 
513 |a Journal Article 
520 3 |a With the integration of large-scale renewable distributed generators (RDGs), the uncertainties and complexity of the security-constrained unit commitment (SCUC) problem have increased significantly. Traditional model-driven methods struggle with computational speed and the need for high-precision modeling, while reinforcement learning (RL) approaches require manually defined reward functions. To address these issues, this paper proposes a novel SCUC strategy based on Generative Adversarial Imitation Learning (GAIL). The proposed strategy allows for the direct learning of the optimal SCUC policy under the guidance of an established expert system. To enhance the quality of the scheduling strategies generated by the generator network, this paper introduces the loss function from the proximal policy optimization (PPO) algorithm. The effectiveness of the proposed method is demonstrated through a simulation case study of a provincial power grid in China. 
653 |a Algorithms 
653 |a Distributed generation 
653 |a Unit commitment 
653 |a Generators 
653 |a Expert systems 
653 |a Optimization 
700 1 |a Li, Yongbo  |u Anhui Power Exchange Center Co., Ltd. , Hefei, Anhui Province, 230022, PR China 
700 1 |a Jiang, Hailong  |u Anhui Power Exchange Center Co., Ltd. , Hefei, Anhui Province, 230022, PR China 
700 1 |a Sun, Wenbing  |u State Grid Anhui Electric Power Co., Ltd. Anqing Power Supply Company, Anqing, Anhui Province, 246003, PR China 
700 1 |a Chao, Wei  |u State Grid Anhui Electric Power Co., Ltd. Lu’an Power Supply Company, Lu’an, Anhui Province, 237006, PR China 
700 1 |a Huang, Xia  |u Economic Technology Research Institute, State Grid Anhui Electric Power Co., Ltd. , Hefei, Anhui Province, 230022, PR China 
773 0 |t Journal of Physics: Conference Series  |g vol. 3015, no. 1 (May 2025), p. 012010 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216358145/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216358145/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch