Aion: Live Migration for In-Memory Databases with Zero Downtime and Reduced Redundant Data Transfer

Guardado en:
Detalles Bibliográficos
Publicado en:Data Science and Engineering vol. 10, no. 2 (Jun 2025), p. 212
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3216423316
003 UK-CbPIL
022 |a 2364-1541 
024 7 |a 10.1007/s41019-024-00276-5  |2 doi 
035 |a 3216423316 
045 2 |b d20250601  |b d20250630 
245 1 |a Aion: Live Migration for In-Memory Databases with Zero Downtime and Reduced Redundant Data Transfer 
260 |b Springer Nature B.V.  |c Jun 2025 
513 |a Journal Article 
520 3 |a Distributed in-memory databases are widely adopted to achieve low latency and high bandwidth for data-intensive applications. They support scale-out by sharding and distributing data across multiple nodes. To efficiently adapt to various workloads, distributed in-memory databases must be capable of migrating shards across nodes. In this paper, we demonstrate that state-of-the-art approaches experience significant performance degradation during migration due to service downtime and redundant data transfer. Furthermore, our findings indicate that the presence of service downtime constrains the scalability of migration strategies, while the transfer of redundant data during the snapshot transfer phase limits their adaptability to dynamic workloads. To this end, this paper proposes Aion, a live migration strategy designed for distributed in-memory databases. Aion eliminates any potential service downtime by immediately switching transaction routing to the destination node. To ensure data consistency between the source and destination nodes, as well as serializable execution during migration, Aion proposes the mutual validation phase. Moreover, Aion introduces an analysis phase before the snapshot transfer phase to identify dynamically changing hotspots in workloads. The analysis phase identifies and transfers tuples and versions accessed less frequently to the destination node, reducing the amount of data transferred. Aion is implemented on a distributed in-memory database and evaluated using various OLTP workloads. The results demonstrate that Aion can fundamentally eliminate service downtime, adapt effectively to various workloads and exhibit robust scalability. Compared to state-of-the-art approaches, Aion achieves up to 2.25x–6.57x higher throughput during migration and shortens the migration duration by 53.7–68.2%. 
653 |a Workload 
653 |a Data transfer (computers) 
653 |a Performance degradation 
653 |a Databases 
653 |a Workloads 
653 |a Distributed memory 
653 |a Redundancy 
653 |a Nodes 
653 |a Skewness 
653 |a Data science 
653 |a Concurrency control 
653 |a Conflict resolution 
773 0 |t Data Science and Engineering  |g vol. 10, no. 2 (Jun 2025), p. 212 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216423316/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216423316/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch