Comparative transcriptomic and proteomic analyses of hypoxia response in wild and cultivated tomato roots

Guardado en:
Bibliografiske detaljer
Udgivet i:BMC Genomics vol. 26 (2025), p. 1
Hovedforfatter: Zhang, Zhihan
Andre forfattere: Hou, Yabing, Yin, Hao, Lu, Song, Liu, Daliang, Cheng, Lin, Yu, Houlin, Li, Tao, Zhao, Yiyong
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3216559080
003 UK-CbPIL
022 |a 1471-2164 
024 7 |a 10.1186/s12864-025-11653-3  |2 doi 
035 |a 3216559080 
045 2 |b d20250101  |b d20251231 
084 |a 58495  |2 nlm 
100 1 |a Zhang, Zhihan 
245 1 |a Comparative transcriptomic and proteomic analyses of hypoxia response in wild and cultivated tomato roots 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundHypoxia significantly impairs tomato productivity and yield. Although cultivated tomato varieties (Solanum lycopersicum) are generally sensitive to low-oxygen conditions, their wild relatives (Solanum habrochaites) display substantially lower sensitivity. To elucidate the molecular mechanisms underlying these contrasting phenotypes, as well as the impact of positive selection and protein-protein interactions of differentially expressed genes (DEGs) and proteins (DEPs), we conducted transcriptomic and proteomic analyses of root samples from a wild tomato accession, T178 (S. habrochaites), and a cultivated tomato variety, Fenzhenzhu (S. lycopersicum, FZZ).ResultsCompared with cultivated seedlings, wild tomato seedlings exhibited markedly reduced sensitivity to hypoxia, as demonstrated by lower growth inhibition and higher membership function values under low-oxygen conditions. In T178, 2,351 DEGs were identified (1,238 upregulated and 1,113 downregulated), whereas in FZZ, 2,931 DEGs were detected (1,326 upregulated and 1,605 downregulated). Heatmap clustering and functional enrichment analysis revealed significant differences in transcriptional regulation between T178 and FZZ under hypoxia. Specifically, among the unique DEGs in T178, genes related to carbohydrate metabolism were significantly upregulated, whereas genes associated with single-organism metabolic processes were downregulated. In contrast, among the unique DEGs in FZZ, genes related to DNA-templated transcription were significantly upregulated, whereas genes associated with protein phosphorylation were downregulated. Proteomic analysis identified 544 and 493 DEPs in T178 and FZZ, respectively, with T178 DEPs predominantly linked to metabolic flexibility and antioxidant responses, whereas both sets were enriched in similar metabolic pathways. Further positive selection analyses emphasized the adaptive evolution of hypoxic responses in wild and cultivated tomatoes, exemplified by T178, which harbors 1,289 positively selected genes linked to carbon metabolism and energy homeostasis, underscoring its adaptation to low-oxygen environments. Moreover, protein-protein interaction (PPI) network analyses revealed distinct adaptive strategies in T178 and FZZ. By analyzing the gene and protein networks of FZZ and T178 under hypoxic conditions, we inferred that T178 enhances hypoxia adaptation by forming more independent small modules and multilevel regulatory networks, whereas FZZ relies on a few large modules with limited functional diversity, resulting in weaker hypoxia tolerance.ConclusionsOur results demonstrated that the molecular response mechanisms to hypoxia differ substantially between wild and cultivated tomatoes, with wild tomatoes showing more distinctive and effective adaptations. The differentially regulated genes identified in this study represent promising targets for future research and breeding efforts aimed at improving hypoxia tolerance in tomatoes. 
653 |a Physiology 
653 |a Energy balance 
653 |a Energy metabolism 
653 |a Oxygen 
653 |a Tomatoes 
653 |a Hypoxia 
653 |a Phenotypes 
653 |a Homeostasis 
653 |a Metabolism 
653 |a Gene set enrichment analysis 
653 |a Modules 
653 |a Respiration 
653 |a Carbohydrate metabolism 
653 |a Proteomics 
653 |a Nitrogen 
653 |a Proteins 
653 |a Carbohydrates 
653 |a Seedlings 
653 |a Sensitivity 
653 |a Metabolic pathways 
653 |a Clustering 
653 |a Salinity 
653 |a Cultivation 
653 |a Phosphorylation 
653 |a Fruit cultivation 
653 |a Genes 
653 |a Gene regulation 
653 |a Molecular modelling 
653 |a Positive selection 
653 |a Down-regulation 
653 |a Transcriptomics 
653 |a Network analysis 
653 |a Adaptation 
653 |a Protein interaction 
653 |a Seeds 
653 |a Metabolites 
653 |a Environmental 
700 1 |a Hou, Yabing 
700 1 |a Yin, Hao 
700 1 |a Lu, Song 
700 1 |a Liu, Daliang 
700 1 |a Cheng, Lin 
700 1 |a Yu, Houlin 
700 1 |a Li, Tao 
700 1 |a Zhao, Yiyong 
773 0 |t BMC Genomics  |g vol. 26 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216559080/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3216559080/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216559080/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch