Age-period-cohort and bayesian age-period-cohort prediction modeling of hepatitis C incidence and mortality in China

Guardado en:
Bibliografiske detaljer
Udgivet i:BMC Public Health vol. 25 (2025), p. 1
Hovedforfatter: Lin, Fei
Andre forfattere: Liu, Zhenzhou, Zhai, Jianli, Shibei Yi, Li, Yanyan, Wang, Yongbin
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3216561184
003 UK-CbPIL
022 |a 1471-2458 
024 7 |a 10.1186/s12889-025-22847-5  |2 doi 
035 |a 3216561184 
045 2 |b d20250101  |b d20251231 
084 |a 58491  |2 nlm 
100 1 |a Lin, Fei 
245 1 |a Age-period-cohort and bayesian age-period-cohort prediction modeling of hepatitis C incidence and mortality in China 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundHepatitis C remains a significant public health challenge in China, despite global advancements in treatment and prevention. This study aimed to investigate the age, period, and cohort effects on hepatitis C incidence and mortality trends in China and project future trajectories to inform targeted interventions.MethodsData on hepatitis C incidence, mortality, and age-standardized rates (ASIR/ASMR) from 1992 to 2021 were extracted from the Global Burden of Disease (GBD) 2021 database. Joinpoint regression analyzed annual percentage change with 95% confidence intervals (CI). Age-period-cohort (APC) model evaluated relative risks (RR) of age, period, and birth cohort effects using Poisson regression. A Bayesian APC (BAPC) model projected trends from 2022 to 2035.ResultsFrom 1992 to 2021, hepatitis C incidence cases declined by 31.54% (1,655,914 to 1,133,610 cases), ASIR declined by 39.00% (152.23 to 92.85 per 100,000, estimated annual percentage change [EAPC] = -1.99%, 95% confidence interval [CI]: -2.32%–-1.67%). Mortality counts rose by 28.60% (36,869 to 51,638 deaths), yet ASMR decreased (EAPC=-1.76%, 95%CI: -1.89%–-1.63%). Gender disparities persisted: females had higher ASIR (157.73 vs. males: 147.86 per 100,000 in 1992 and 93.23 vs. males: 93.10 per 100,000 in 2021) but lower ASMR (3.96 vs. males: 4.67 per 100,000 in 1992 and 2.28 vs. males: 2.89 per 100,000 in 2021). The APC model analysis revealed elevated risks for pre-1962 birth cohorts (incidence relative risk [RR] = 1.479, 95%CI: 0.391–5.601; mortality RR = 2.496, 95%CI: 2.094–2.975) and declining period effects post-2004 (incidence RR = 0.757, 95%CI: 0.635–0.902; mortality RR = 0.618, 95%CI: 0.553–0.690). The BAPC model projections indicated continued ASIR declines by 2035, yet female incidence is expected to rise (87.45 to 95.21 per 100,000), contrasting with male declines (83.94 to 74.71 per 100,000). Mortality rate will decrease, but absolute deaths remain substantial.ConclusionsDeclining standardized rates reflect progress in prevention and treatment scale-up, yet rising mortality cases underscore the enduring burden of undiagnosed infections. Targeted interventions for aging cohorts, gender-specific strategies, and equitable access to direct-acting antivirals are critical to achieving hepatitis C elimination. Policymakers must prioritize enhanced screening, public awareness, and resource allocation to mitigate disparities and align with WHO 2030 goals. 
610 4 |a World Health Organization 
651 4 |a China 
653 |a Resource allocation 
653 |a Population 
653 |a Software 
653 |a Males 
653 |a Public health 
653 |a Hepatitis C 
653 |a Trends 
653 |a Disease 
653 |a Mortality 
653 |a Females 
653 |a Public awareness 
653 |a Liver cancer 
653 |a Prevention 
653 |a Statistical analysis 
653 |a Risk assessment 
653 |a Aging 
653 |a Antiviral agents 
653 |a Partial differential equations 
653 |a Bayesian analysis 
653 |a Gender 
653 |a Prediction models 
653 |a Hepatitis 
653 |a Age groups 
653 |a Fatalities 
653 |a Social 
700 1 |a Liu, Zhenzhou 
700 1 |a Zhai, Jianli 
700 1 |a Shibei Yi 
700 1 |a Li, Yanyan 
700 1 |a Wang, Yongbin 
773 0 |t BMC Public Health  |g vol. 25 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216561184/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3216561184/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216561184/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch