Rapid monitoring of fermentations: a feasibility study on biological 2,3-butanediol production

Guardat en:
Dades bibliogràfiques
Publicat a:Biotechnology for Biofuels and Bioproducts vol. 18 (2025), p. 1
Autor principal: Tillman, Zofia
Altres autors: Peterson, Darren J, Dowe, Nancy, Wolfrum, Ed
Publicat:
Nature Publishing Group
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3216563324
003 UK-CbPIL
022 |a 2731-3654 
022 |a 1754-6834 
024 7 |a 10.1186/s13068-025-02662-1  |2 doi 
035 |a 3216563324 
045 2 |b d20250101  |b d20251231 
084 |a 113017  |2 nlm 
100 1 |a Tillman, Zofia 
245 1 |a Rapid monitoring of fermentations: a feasibility study on biological 2,3-butanediol production 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Background2,3-butanediol (2,3-BDO) is an economically important platform chemical that can be produced by the fermentation of sugars using an engineered strain of Zymomonas mobilis. These fermentations require continuous monitoring and modification of fermentation conditions to maximize 2,3-BDO yields and minimize the production of the undesired coproducts glycerol and acetoin. Because of the time required for sampling and off-line chromatographic measurement of fermentation samples, the ability of fermentation scientists to modify fermentation conditions in a timely manner is limited. The goal of this study was to test if near-infrared spectroscopy (NIRS) along with multivariate statistics could reduce the time needed for this analysis and enable real-time monitoring and control of the fermentation.ResultsIn this work we developed partial least squares (PLS) calibration models to predict the concentrations of glucose, xylose, 2,3-BDO, acetoin, and glycerol in fermentations via NIRS using two different spectrometers and two different spectroscopy modalities. We first evaluated the feasibility of rapid NIRS monitoring through experiments where we measured the signals from each analyte of interest and built NIRS-based PLS models using spectra from synthetic samples containing uncorrelated concentrations of these analytes. All analytes showed unique spectral signatures, and this initial modeling showed that all analytes could be detected simultaneously. We then began work with samples from laboratory fermentation experiments and tested the feasibility of regression model development across two spectral collection modalities (at-line and on-line) and two instruments: a laboratory-grade instrument and a low-cost instrument with a more limited spectral range. All modalities showed promise in the ability to monitor Z. mobilis fermentations of glucose and xylose to 2,3-BDO. The low-cost instrument displayed a lower signal-to-noise ratio than the laboratory-grade instrument, which led to comparatively lower performance overall, but still provided sufficient accuracy to monitor fermentation trends. While the ease of use of on-line monitoring systems was favored as compared to at-line systems due to the lack of sampling required and potential for automated process control, we observed some decrease in performance due to the additional complexity of the sample matrix.ConclusionWe have demonstrated that NIRS combined with multivariate analysis can be used for at-line and on-line monitoring of the concentrations of glucose, xylose, 2,3-BDO, acetoin, and glycerol during Z. mobilis fermentations. The decrease in signal-to-noise ratio when using a low-cost spectrometer led to greater prediction error than the laboratory-grade spectrometer for at-line monitoring. The on-line monitoring modality showed great promise for real time process control via NIRS. 
653 |a Zymomonas mobilis 
653 |a Spectrometers 
653 |a Xylose 
653 |a Samples 
653 |a Multivariate analysis 
653 |a Metabolism 
653 |a Sampling 
653 |a Feasibility studies 
653 |a Monitoring 
653 |a Infrared spectra 
653 |a Glucose 
653 |a Fermentation 
653 |a Process control 
653 |a Fourier transforms 
653 |a Experiments 
653 |a Infrared spectroscopy 
653 |a Glycerol 
653 |a Butanediol 
653 |a Process controls 
653 |a Real time 
653 |a Lignocellulose 
653 |a Software 
653 |a Economic importance 
653 |a Regression models 
653 |a Laboratories 
653 |a Spectral signatures 
653 |a Yeast 
653 |a Statistical analysis 
653 |a Low cost 
653 |a Acetoin 
653 |a Spectrum analysis 
653 |a Near infrared radiation 
653 |a Signal to noise ratio 
653 |a Environmental 
700 1 |a Peterson, Darren J 
700 1 |a Dowe, Nancy 
700 1 |a Wolfrum, Ed 
773 0 |t Biotechnology for Biofuels and Bioproducts  |g vol. 18 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216563324/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3216563324/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216563324/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch