mNSF: multi-sample non-negative spatial factorization

保存先:
書誌詳細
出版年:Genome Biology vol. 26 (2025), p. 1
第一著者: Wang, Yi
その他の著者: Woyshner, Kyla, Sriworarat, Chaichontat, Genevieve Stein-O’Brien, Goff, Loyal A, Hansen, Kasper D
出版事項:
Springer Nature B.V.
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3216564354
003 UK-CbPIL
022 |a 1474-7596 
022 |a 1474-760X 
022 |a 1465-6906 
024 7 |a 10.1186/s13059-025-03601-x  |2 doi 
035 |a 3216564354 
045 2 |b d20250101  |b d20251231 
084 |a 265139  |2 nlm 
100 1 |a Wang, Yi 
245 1 |a mNSF: multi-sample non-negative spatial factorization 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Analyzing multi-sample spatial transcriptomics data requires accounting for biological variation. We present multi-sample non-negative spatial factorization (mNSF), an alignment-free framework extending single-sample spatial factorization to multi-sample datasets. mNSF incorporates sample-specific spatial correlation modeling and extracts low-dimensional data representations. Through simulations and real data analysis, we demonstrate mNSF’s efficacy in identifying true factors, shared anatomical regions, and region-specific biological functions. mNSF’s performance is comparable to alignment-based methods when alignment is feasible, while enabling analysis in scenarios where spatial alignment is unfeasible. mNSF shows promise as a robust method for analyzing spatially resolved transcriptomics data across multiple samples. 
653 |a Data processing 
653 |a Software 
653 |a Gene expression 
653 |a Transcriptomics 
653 |a Genomics 
653 |a Spatial data 
653 |a Discriminant analysis 
653 |a Data analysis 
700 1 |a Woyshner, Kyla 
700 1 |a Sriworarat, Chaichontat 
700 1 |a Genevieve Stein-O’Brien 
700 1 |a Goff, Loyal A 
700 1 |a Hansen, Kasper D 
773 0 |t Genome Biology  |g vol. 26 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216564354/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3216564354/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216564354/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch