Developing a Pilot Bridge Management System for the NMSU Bridge Inspection Program Using Time and Cost Planning Strategies Supported by Metaheuristic Optimization Engines

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Montero, Valeria Navarro
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3216737578
003 UK-CbPIL
020 |a 9798280714823 
035 |a 3216737578 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Montero, Valeria Navarro 
245 1 |a Developing a Pilot Bridge Management System for the NMSU Bridge Inspection Program Using Time and Cost Planning Strategies Supported by Metaheuristic Optimization Engines 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The New Mexico State University (NMSU) Bridge Inspection Program (BIP) supports the New Mexico Department of Transportation (NMDOT) by performing the routine inspections for 25% of the bridges in the state. The principal challenge NMSU BIP faces is the management of the inspection data and inspection route planning, due to the manual handling of the data and manual scheduling of inspections.This thesis proposes the development of a pilot Bridge Management System (BMS) for the NMSU BIP that improves the inspection planning and data management using data-driven strategies. The BMS was composed by integrating Information Management, Data Analysis and Decision Support. The Information Management developed the BIP dataset containing the National Bridge Inventory (NBI) information of the bridges assigned to BIP.The Data Analysis applied two approaches: Machine Learning classification models to provide the visualization of the bridge conditions along the state using geographical and NBI information associated to the condition states of the bridge; and metaheuristic optimization algorithms to determine the optimal inspection route.The Decision Support integrated the priorities the BIP selected for optimizing the inspection routes into a utility function, that considered the ratio between the total distance and total cost related to the optimal route, to evaluate the algorithms performance. The evaluation showed that the Bee Colony Optimizer Algorithm provided the most balanced performance based on the utility function and computational performance. The findings of this research provide a practical framework for improving bridge inspection planning at NMSU BIP. 
653 |a Civil engineering 
653 |a Computer engineering 
653 |a Artificial intelligence 
653 |a Architectural engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216737578/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216737578/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch