Effective and Transparent Use of GPU in Constraint Solving

Enregistré dans:
Détails bibliographiques
Publié dans:ProQuest Dissertations and Theses (2025)
Auteur principal: Tardivo, Fabio
Publié:
ProQuest Dissertations & Theses
Sujets:
Accès en ligne:Citation/Abstract
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Combinatorial problems are pervasive in our lives. From solving a Sudoku puzzle to quickly delivering Amazon orders, all these tasks requires finding a good combinations of elements, locations, and more. The ability to effectively solve combinatorial problems is essential, as it minimizes resource waste, prevents service delays, and reduces costs. For decades, Constraint Programming (CP) has been successfully employed to tackle combinatorial problems. However, as these problems grow larger and more complex each year, constraint solvers must continuously advance their capabilities to keep pace. Graphics Processing Units (GPUs) accelerate costly computations and have been successfully used across various domains. Their unprecedented power and accessibility prompt a (re)consideration of their use in CP. This thesis identifies and develops novel approaches to effectively and transparently harness the power of GPUs to advance CP. It introduces a shift in perspective that enables the achievement of meaningful results and paves the way for addressing increasingly complex and large-scale problems. 
ISBN:9798280717978
Source:ProQuest Dissertations & Theses Global