AdaptBlur: Adaptive Linear Filter for Enhanced Deep Learning Classification Performance

Sparad:
Bibliografiska uppgifter
I publikationen:ProQuest Dissertations and Theses (2025)
Huvudupphov: Thondilege, Ganesha
Utgiven:
ProQuest Dissertations & Theses
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3216752328
003 UK-CbPIL
020 |a 9798280720350 
035 |a 3216752328 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Thondilege, Ganesha 
245 1 |a AdaptBlur: Adaptive Linear Filter for Enhanced Deep Learning Classification Performance 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Image preprocessing is crucial in deep learning models for high performance and accuracy. This study implements AdaptBlur, a dynamic linear filter developed from a second-order partial differential equation using finite difference approximations, which enhances image quality while preserving the image structure with dynamic parameters that are optimized through the Nelder-Mead optimization, minimizing mean square error to improve the effectiveness of the filter. Moreover, the study evaluates the impact of the results on model performance on deep learning classification using publicly available datasets. Experimentally, image classifiers trained on preprocessed data with the AdaptBlur filter perform much better than those trained without filtering or with filtering using the conventional Gaussian filter, as this filter gives nearly a 10% increase in classification accuracy. 
653 |a Applied mathematics 
653 |a Computer science 
653 |a Mathematics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3216752328/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3216752328/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch